A series of laboratory model tests has been carried out to investigate the using of pomegranate sticks mat as reinforcement to increase the bearing capacity of footing on loose sand. The influence of depth and length of pomegranate sticks layer was examined. In the present research single layer of pomegranate sticks reinforcement was used to strengthen the loose sand stratum beneath the strip footing. The dimensions of the used foundation were 4*20 cm. The reinforcement layer has been embedded at depth 2, 4 and 8 cm under surcharge stresses . Reinforcing layer with length of 8 and 16 cm were used. The final model test results indicated that the inclusion of pomegranate sticks reinforcement is very effective in improvement the loading capacity of loose sand. The optimal
benefit in bearing capacity value was realized as the (D/B) ratio (embedded depth to footing width) equal to 0.5.The bearing capacity of a reinforced soil with single layer of pomegranate sticks at (D/B) ratio of o.5 increased by about 4 times (corresponding to S/B =10%) than that for the unreinforced case and continuous in increasing beyond that with no failure. The improvement in bearing capacity decreased with increasing depth of embedment of reinforcement layer until reach to a specified point in which the bearing capacity of a reinforced soil approximately identical with the case of no reinforcement. Also it was found that increase the length of pomegranate sticks layer has no beneficial effect on the improved the bearing capacity of loose sand.
Fine aggregate (Sand) is a necessary material used in concrete construction purposes, it’s naturally available and it’s widely used around the world for different parts of construction in any building mainly for filling the voids between gravel. Sand gradation is important for different composite materials, and it gives good cohesion when compared with coarse sand that provides strength for the building. Therefore, sand is necessary to be tested before it is used and mixed with other building materials in construction and the specimen must be selected carefully to represent the real material in the field. The specimen weight must be larger than the required weight for test. When t
أن التطور العلمي الحاصل فيما يخص المجال الرياضي أرسى آفاق جديدة لمواكبة التطور الكبير في مجا ل الألعاب والفعاليات الرياضية المختلفة ,و أن تحقيق النتائج الجيدة في فعاليات العاب القوى بشكل عام والثلاثية بشكل خاص في التدريب الرياضي يتطلب إتباع الأساليب العلمية الدقيقة والموضوعية بشكل سليم ومخطط له،فضلا عنة تطبيق نظريات ومنحى جديد لمواكبة الاتجاهات الحديثة في تحقيق النتائج الجيدة للوصول إلى المستويات العالية
... Show MoreThe study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring
This paper is devoted to investigate the effect of burning by fire flame on the behavior and load carrying capacity of rectangular reinforced concrete rigid beams. Reduced scale beam models (which are believed to resemble as much as possible field conditions) were suggested. Five end restrained beam specimens were cast and tested. The specimens were subjected to fire flame temperatures ranging from (25-750) ºC at age of 60 days, two temperature levels of 400ºC and 750ºC were chosen with exposure duration of 1.5 hour. The cast rectangular reinforced concretebeam (2250×375×375 mm) (length× width× height respectively) were subjected to fire. Results indicate remarkable reduction in the ultrasonic pulse velocity and rebound number of
... Show MoreA field-pilot scale slow sand filter (SSF) was constructed at Al-Rustamiya Sewage Treatment Plant (STP) in Baghdad city to investigate the removal efficiency in terms of Biochemical Oxygen Demand (BOD5), Chemical oxygen demand (COD), Total Suspended Solids (TSS) and Chloride concentrations for achieving better secondary effluent quality from this treatment plant. The SSF was designed at a 0.2 m/h filtration rate with filter area 1 m2 and total filter depth of 2.3 m. A filter sand media 0.35 mm in size and 1 m depth was supported by 0.2 m layer of gravel of size 5 mm. The secondary effluent from Al-Rustamiya STP was used as the influent to the slow sand filter. The results showed that the removal of BOD5, COD, TSS, and Chloride were
... Show MoreThis paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time
... Show More