Rhythm is considered one of the creative concepts in the recent architectural thought; it has emerged clearly as a mean of creating the highest levels of creativity in architecture, especially in contemporary architectural movements. The importance of rhythm has emerged, especially, when the architecture , its beginnings concentrated on the principle of the links with poetic structures. Many architectural studies deal with concept of rhythm in architecture with different ways various according to the trend of each study, this show the importance of studying the concept of rhythm in the architectural field in general. This study try to focus on the utilization of rhythm as creative system in architecture of heritage and contemporary house because its important in the generation of new architectural models. The paper discusses the importance of this concept and its utilization in the designs, in order to explore the particular problem which has been represented as (The absence of a specific imagination of methods and strategies for achieving
rhythm).Thus the objectives of the paper has been formed by building theoretical framework consisting of five main items of detailed theoretical field which specifies rhythm as a concept ,firstly, then the application of the important heritage and contemporary houses in Mosul Architecture as a model, concluding utilization of rhythm as creative system in Heritage and Contemporary Houses in Mosul Architecture, finally, after discussing the results to submit the conclusions in the end. The conclusion is That suitable rhythm creativity in Mosul architecture is by unit and immerge the Mosul cultural elements as new tool in steps of design process of Heritage and Contemporary Houses in Mosul.
Natural convection in an annular space provided with metal foam fins attached to the inner cylinder is studied numerically. The metal foam fins made of copper were inserted in different axial sections with three fins in each section. The temperature of the inner cylinder is kept constant while the annular outer surface is adiabatic. The thickness effect of the inner pipe wall was considered. Naiver Stokes equation with Boussinesq approximation is used for the fluid regime while Brinkman-Forchheimer Darcy model is used for metal foam. In addition, the local thermal non-equilibrium condition in the energy equation of the porous media is presumed. The effect of Rayleigh numb |
Abstract:
It is essential to provide health care directly or indirectly based on laboratory tests in order of diagnosing diseases. There is an urgent need for the results of such tests to be accurate and reliable. Therefore, the International Organization for Standardization has prepared special standards for medical laboratories to prove their efficiency, presented in standards 15189: 2012. The aim of the research is to determine the possibility of the Al-alwiya Women's Hospital in meeting the requirements of the standards 15189: 2012, which includes administrative requirements consisting of fifteen items and technical requirements consisting of ten items. The research is important because laboratories shou
... Show MoreBackground: The healing process involves the restoration of the body’s structural integrity. The extracellular matrix, blood cells, cytokines, and growth factors are all involved in this dynamic, intricate, multicellular process. Hemostasis, the inflammatory phase, the proliferative phase, and the maturation phase are all included. Opuntia ficus-indica oil (OFI) and Punica grantum (PGS) oil are extensively used natural treatments that are regarded as advantageous for their sedative, spasmolytic, and anti-inflammatory properties, as well as for angiogenesis promotion, fibroblast increase, collagen production and deposition, and extracellular-matrix remodeling. Materials and methods: Twenty-four New Zealand rab
... Show MoreThis study was undertaken to prepare Nano zinc oxide (ZnO) by precipitation and microemulsion methods. Scanning electron microscopy (SEM), X-ray diffraction (XRD), FTIR spectrometry, atomic force microscopy (AFM), and Brunauer Emmett Teller (BET) surface area were the techniques employed for the preparation. The particle size of prepared nano ZnO was 69.15nm and 88.49nm for precipitation and microemulsion methods, respectively, which corresponded to the BET surface area 20.028 and 16.369m2/g respectively. The activity of prepared nano ZnO as a photocatalyst was estimated by the removal of ampicillin (Amp) under visible light. This study, therefore, examined the effect of pH in the range of 5-11, initial concen
... Show MoreIn current research Copper was employed for preparing a ternary system of Al–Si alloy in different (0.2–2.5 wt. %) the best was taken is (1.5%wt) of copper that circumstances of solidification for improving the mechanical performance of the available in aluminium alloy. Cast iron molds were prepared to obtain tensile strength testing specimens. Alloys were prepared by employing gas furnaces. The molten metal was poured into a preheated cast-iron mold. The obtained alloy structures were studied using an X-ray diffractometer and optical microscopy. The mechanical performance of the prepared alloys was examined under the influence of different hardening conditions in both heat and non-heat-treated conditions. The outcomes showed at the
... Show MoreReaxys Chemistry database information SciVal Topics Metrics Abstract A novel CoO–ZnO nanocomposite was synthesized by the photo irradiation method using a solution of cobalt and zinc complexes and used as a coating applied by electrophoretic deposition (EPD) for corrosion protection of stainless steel (SS) in saline solution. The samples were characterized using powder XRD, scanning electron microscopy (SEM) and electrochemical polarization. It was also found that the coating was still stable after conducting the corrosion test: it contained no cracks and CoO–ZnO nanocomposites clearly appeared on the surface. SEM showed that the significant surface cracking disappeared. XRD confirmed that CoO–ZnO nanocomposites comprised CoO and Zn
... Show MoreThe electrode in the microbial fuel cell has a significant effect on cell performance. The treatment of the electrode is a crucial step to make the electrode surface more habitable for bacteria growth, thus, increases the power production as well as waste treatment. In the current study, two graphite electrodes were treated by a microwave. The first electrode was treated with 100W microwave energy, while the second one was treated with 600W microwave energy. There is a significant enhancement in the surface of the graphite anode after the pretreatment process. The results show an increase in the power density from 10 mW/m2 to 15 mW/m2 with 100w treatment and to 13.47 mW/m2 with 600w treatment. An organic
... Show More