Fiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and analyzed. A discussion on the main aspects of the SLS of FRP RC is introduced. The service load that fulfills the serviceability requirements, at a cross-section level, ranges between 0.27 and 0.38 times the ultimate load for sections dimensioned to fail in concrete crushing. The determinant criterion is the deflection limitation
In this work, a step-index fiber with core index and cladding index has been designed. Single-mode operation can be obtained by using a fiber with core diameters 4–13 µm operating at a wavelength of 1.31 µm and by 4–15 µm at 1.55 µm. The fundamental fiber mode properties such as phase constant, effective refractive index, mode radius, effective mode area and the power in the core were calculated. Distributions of the intensity and the amplitude were shown.
Rock engineers widely use the uniaxial compressive strength (UCS) of rocks in designing
surface and underground structures. The procedure for measuring this rock strength has been
standardized by both the International Society for Rock Mechanics (ISRM) and American Society
for Testing and Materials (ASTM), Akram and Bakar(2007).
In this paper, an experimental study was performed to correlate of Point Load Index ( Is(50))
and Pulse Wave Velocity (Vp) to the Unconfined Compressive Strength (UCS) of Rocks. The effect
of several parameters was studied. Point load test, Unconfined Compressive Strength (UCS) and
Pulse Wave Velocity (Vp) were used for testing several rock samples with different diameters.
The predicted e
The rehabilitation of deteriorated pavements using Asphalt Concrete (AC) overlays consistently confronts the reflection cracking challenge, where inherent cracks and joints from an existing pavement layer are mirrored in the new overlay. To address this issue, the current study evaluates the effectiveness of Engineered Cementitious Composite (ECC) and geotextile fabric as mitigation strategies. ECC, characterized by its tensile ductility, fracture resistance, and high deformation capacity, was examined in interlayer thicknesses of 7, 12, and 17 mm. Additionally, the impact of geotextile fabric positioning at the base and at 1/3 depth of the AC specimen was explored. Utilizing the Overlay Testing Machine (OTM) for evaluations, the research d
... Show MoreThe preparation of the title compound, C26H25N, was achieved by the condensation of an ethanolic mixture of benzaldehyde, cyclohexanone and ammonium acetate in a 2:1:1 molar ratio. There are two crystallographically independent molecules in the asymmetric unit. The two cyclohexyl rings adopt an
The root lesion nematode, Pratylenchus neglectus, is one of the most damaging nematodes to affect wheat worldwide. The nematode is widely distributed in Montana, primarily affecting winter wheat within the state. Managing the nematode primarily involves rotation to resistant and moderately resistant crops (peas, lentils, and barley). A nematode survey was conducted across the state nearly 10 years after an initial survey, to reassess the nematode threat and assess the impact of changing trends in crop rotations. To assess the broad applicability of rotation crops to control P. neglectus across Montana, greenhouse trials were conducted to challenge rotational crops using eight populations of P. neglectus collected from geographicall
... Show MoreAim To develop a low-density polyethylene–hydroxyapatite (HA-PE) composite with properties tailored to function as a potential root canal filling material. Methodology Hydroxyapatite and polyethylene mixed with strontium oxide as a radiopacifier were extruded from a single screw extruder fitted with an appropriate die to form fibres. The composition of the composite was optimized with clinical handling and placement in the canal being the prime consideration. The fibres were characterized using infrared spectroscopy (FTIR), and their thermal properties determined using differential scanning calorimetry (DSC). The tensile strength and elastic modulus of the composite fibres and gutta-percha were compared, dry and after 1 month storage in
... Show MoreThis research is devoted to investigate the behavior and performance of reinforced concrete beams strengthened with externally bonded Carbon Fiber Reinforced Polymer (CFRP) laminates under the effect of torsion. In this study a theoretical analysis has been conducted using finite element code ANSYS. Six previously tested beams are used to investigate reinforced concrete beams behavior
under torsion, two of them are solid and the rest are box-section beams. Also, two beams are without CFRP reinforcement, which are used as control beams for the strengthened one, and the other four beams are strengthened with CFRP laminates with different number of layers and spacing. Numerical investigation is conducted on these beams, and comparisons b
Linear attenuation coefficient of polymer composite for beta particles and bremsstrahlung ray were investigated as a function of the absorber thickness and energy. The attenuation coefficient were obtained using NaI(Tl) energy selective scintillation counter with 90Sr/90Y beta source having an energy range from 0.1-1.1 MeV. The present results show the capability of this composite to absorber beta particles and bremsstrahlung ray that yield from it. That’s mean it is useful to choice this composite for radiation shielding of beta ray with low thickness.