Preferred Language
Articles
/
joe-229
Effect of Variation of Degree of Saturation with depth on Soil–Concrete Pile Interface in Clayey Soil
...Show More Authors

Bearing capacity of a concrete pile in fine grained cohesive soils is affected by the degree of saturation of the surrounding soil through the contribution of the matric suction. In addition, the embedded depth and the roughness of the concrete pile surface (expressed as British Pendulum Number BPN) also have their contribution to the shear strength of the concrete pile, consequently its bearing capacity. Herein, relationships among degree of saturation, pile depth, and surface roughness, were proposed as a mathematical model expressed as an equation where the shear strength of a pile can be predicted in terms of degree of saturation, depth, and BPN. Relationship among undrained shear strength of the soil, depth and degree of saturation also found and expressed as mathematical equation that represents a 3D- surface; where the value of cu can be predicted by knowing the other aforementioned factors. Relationship between shear strength and the concrete surface roughness was also shown reflecting that the shear strength increases with the increase of surface roughness.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jul 31 2016
Journal Name
International Journal Of Advanced Research
Attenuation Coefficient of Reactive Powder Concrete Using Different Energies.
...Show More Authors

View Publication
Crossref (6)
Crossref
Publication Date
Thu Jul 27 2023
Journal Name
Buildings
Structural Behavior of Reactive Powder Concrete under Harmonic Loading
...Show More Authors

Industrial buildings usually are designed to sustain several types of load systems, such as dead, live, and dynamic loads (especially the harmonic load produced by rotary motors). In general, these buildings require high-strength structural elements to carry the applied loads. Moreover, Reactive Powder Concrete (RPC) has been used for this purpose because of its excellent mechanical strength and endurance. Therefore, this study provides an experimental analysis of the structural behaviors of reinforced RPC beams under harmonic loads. The experimental program consisted of testing six simply supported RPC beams with lengths of 1500 mm, widths of 150 mm, and thicknesses of 200 mm under harmonic loading with varied frequencies between 1

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Behavior of Geopolymer Concrete Reinforced by Sustainable Copper Fiber
...Show More Authors

View Publication
Crossref (5)
Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
Behavior of Reinforced Concrete Continuous Beams under Pure Torsion
...Show More Authors

Practically, torsion is normally combined with flexure and shear actions. Even though, the behavior of reinforced concrete continuous beams under pure torsion is investigated in this study. It was performed on four RC continuous beams under pure torsion. In order to produce torsional moment on the external supports, an eccentric load was applied at various distances from the longitudinal axis of the RC beams until failure.

Variables considered in this study are absolute vertical displacement of the external supports, torsional moment’s capacity, angle of twist and first cracks occurrences. According to experimental results; when load eccentricity increased from 30cm to 60cm, the absolute vertical displacement i

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 01 2013
Journal Name
Journal Of Engineering
Serviceability Performance of Externally Prestressed steel-Concrete Composite Girders
...Show More Authors

Publication Date
Tue May 23 2023
Journal Name
Journal Of Engineering
Serviceability Performance of Externally Prestressed Steel-Concrete Composite Girders
...Show More Authors

The behavior of externally prestressed composite beams under short term loading has been studied. A computer program developed originally by Oukaili to evaluate curvature is modified to evaluate the deflection of prestressed composite beam under flexural load. The analysis model based on the deformation compatibility of entire structure that allows to determine the full history of strain and stress distribution along cross section depth, deflection and stress increment in the external tendons .
The evaluation of curvatures for the composite beam involves iterations for computing the strains vectors at each node at any loading stage. The stress increment determined using equations depended on the member deflection at points of connecti

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Aug 26 2021
Journal Name
International Journal Of Applied Mechanics And Engineering
Probabilistic Mesoscale Analysis of Concrete Beams Subjected to Flexure
...Show More Authors
Abstract<p>In this paper, the probabilistic behavior of plain concrete beams subjected to flexure is studied using a continuous mesoscale model. The model is two-dimensional where aggregate and mortar are treated as separate constituents having their own characteristic properties. The aggregate is represented as ellipses and generated under prescribed grading curves. Ellipses are randomly placed so it requires probabilistic analysis for model using the Monte Carlo simulation with 20 realizations to represent geometry uncertainty. The nonlinear behavior is simulated with an isotropic damage model for the mortar, while the aggregate is assumed to be elastic. The isotropic damage model softening be</p> ... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Iraqi Journal Of Physics
Effect of Organic / Inorganic Gate Materials on the Organic Field-Effect Transistors Performance
...Show More Authors

The choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Iraqi Journal Of Physics
Effect of Organic / Inorganic Gate Materials on the Organic Field-Effect Transistors Performance
...Show More Authors

The choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators. To mo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 10 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Numerical and Experimental Study of Winglet Effect with Different Cant Angles
...Show More Authors

The present work aims to investigate the aerodynamic characteristics of the winglet cant angle of Boeing 737-800 wing numerically and experimentally. The wing contain two swept angles 38.3o and 29.13o respectively, taper ratio 0.15 and aspect ratio 8.04. The wing involves three types of airfoils sections. Four cant angles for blended winglet have been considered (0o, 34o, 60o, 83.3o). The winglet has been analyzed to find the best cant angle for the wing without and with winglet. These models have been tested theoretically at Reynolds number of 2.06 x106 in order to study the winglet aerodynamic characteristics which consist of coefficient of Drag, coefficient of lift and Lift to drag ratio, pitching moment coefficient and bending moment co

... Show More