Preferred Language
Articles
/
joe-2296
Strengthening and Closing Cracks for Existing Reinforced Concrete Girders Using Externally Post-Tensioned Tendons
...Show More Authors

This research is devoted to study the strengthening technique for the existing reinforced concrete beams using external post-tensioning. An analytical methodology is proposed to predict the value of the effective prestress force for the external tendons required to close cracks in existing beams. The external prestressing force required to close cracks in existing members is only a part from the total strengthening force.
A computer program created by Oukaili (1997) and developed by Alhawwassi (2008) to evaluate curvature and deflection for reinforced concrete beams or internally prestressed concrete beams is modified to evaluate the deflection and the stress of the external tendons for the externally strengthened beams using Matlab 7.0.
The analytical investigation is implemented on three ideal reinforced concrete beam models, each model is considered to be strengthened using three types of external tendon profile (straight, draped and double draped), where each type of tendon profile is analyzed separately. No comparisons were made with analytical or experimental investigations, because no publications for this kind of studies were found.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri May 01 2015
Journal Name
Journal Of Engineering
Cooling Load Calculations For Typical Iraqi Roof And Wall Constructions Using Ashrae's RTS Method
...Show More Authors

The present work is an attempt to develop design data for an Iraqi roof and wall constructions using the latest ASHRAE Radiant Time Series (RTS) cooling load calculation method. The work involves calculation of cooling load theoretically by introducing the design data for Iraq, and verifies the results experimentally by field measurements. Technical specifications of Iraqi construction materials are used to derive the conduction time factors that needed in RTS method calculations. Special software published by Oklahoma state university is used to extract the conduction factors according to the technical specifications of Iraqi construction materials.  Good agreement between the average theoretical and measured cooli

... Show More
View Publication Preview PDF
Publication Date
Thu Aug 20 2020
Journal Name
Geosciences
Thematic Maps for the Variation of Bearing Capacity of Soil Using SPTs and MATLAB
...Show More Authors

The current study involves placing 135 boreholes drilled to a depth of 10 m below the existing ground level. Three standard penetration tests (SPT) are performed at depths of 1.5, 6, and 9.5 m for each borehole. To produce thematic maps with coordinates and depths for the bearing capacity variation of the soil, a numerical analysis was conducted using MATLAB software. Despite several-order interpolation polynomials being used to estimate the bearing capacity of soil, the first-order polynomial was the best among the other trials due to its simplicity and fast calculations. Additionally, the root mean squared error (RMSE) was almost the same for the all of the tried models. The results of the study can be summarized by the production

... Show More
View Publication
Crossref (20)
Crossref
Publication Date
Wed Aug 25 2021
Journal Name
Caai Transactions On Intelligence Technology
Shoulder girdle recognition using electrophysiological and low frequency anatomical contraction signals for prosthesis control
...Show More Authors

View Publication Preview PDF
Scopus (14)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Studying the Effect of Water on Electrical Conductivity of Carbon Reinforced Aluminum Composite Material
...Show More Authors

The aim of this study is to understand the effect of addition carbon types on aluminum electrical conductivity which used three fillers of carbon reinforced aluminum at different weight fractions. The experimental results showed that electrical conductivity of aluminum was decreased by the addition all carbon types, also at low weight fraction of carbon black; it reached (4.53S/cm), whereas it was appeared highly increasing for each carbon fiber and synthetic graphite. At (45%) weight fraction the electrical conductivity was decreased to (4.36Scm) and (4.27Scm) for each carbon fiber and synthetic graphite, respectively. While it was reached to maximum value with carbon black. Hybrid composites were investigated also; the results exhibit tha

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Three-Dimensional Finite Element Simulation of the Buried Pipe Problem in Geogrid Reinforced Soil
...Show More Authors

Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.

This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 19 2017
Journal Name
Al-khwarizmi Engineering Journal
Improve Wear Resistance on Al 332 Alloy Matrix- Micro -Nano Al2O3 Particles Reinforced Composite
...Show More Authors

The wear behavior of alumina particulate reinforced A332 aluminium alloy composites produced by a stir casting process technique were investigated. A pin-on-disc type apparatus was employed for determining the sliding wear rate in composite samples at different grain size (1 µm, 12µm, 50 nm) and different weight percentage (0.05-0.1-0.5-1) wt% of alumina respectively. Mechanical properties characterization which strongly depends on microstructure properties of reinforcement revealed that the presence of ( nano , micro) alumina particulates lead to simultaneous increase in hardness, ultimate tensile stress (UTS), wear resistances. The results revealed that UTS, Hardness, Wear resistances increases with the increase in the percentage of

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 02 2010
Journal Name
Journal Of Engineering
Bearing capacity of square footing on geogrid reinforced loose sand to resist eccentric load
...Show More Authors

This research presents and discuss the results of experimental investigation carried out on geogrids model to study the behavior of geogrid in the loose sandy soil. The effect of location eccentricity, depth of first layer of reinforcement, vertical spacing, number and type of reinforcement layers have been investigated. The results indicated that the percentage of bearing improvement a bout (22 %) at number of reinforced layers N=1 and about (47.5%) at number of reinforced layers N=2 for different Eccentricity values when depth ratio and vertical spacing between layers are (0.5B and 0.75B) respectively

Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Bearing Capacity of Shallow Footing on Compacted Filling Dune Sand Over Reinforced Gypseous Soil
...Show More Authors

Existence of these soils, sometimes with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of gypsum by the action of waterflow through soil mass. In this research, a new technique is adopted to investigate the performance of replacement and geosynthetic reinforcement materials to improve the gypseous soil behavior through experimential set up manufactured loaclally specially for this work. A series of tests were carried out using steel container (600*600*500) mm. A square footing (100*100) mm was placed at the center of the top surface of the bed soil. The results showed that the most effective thickness for the dune sand layer with geotextile at the interface, within

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Mon Jan 29 2024
Journal Name
Polymer Bulletin
An experimental study to investigate the effect of aluminum nanorod-reinforced epoxy matrix nanocomposites
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Structures
Accelerating reliability analysis of deteriorated simply supported concrete beam with a newly developed approach: MCS, FORM and ANN
...Show More Authors

Reliability analysis methods are used to evaluate the safety of reinforced concrete structures by evaluating the limit state function 𝑔(𝑋𝑖). For implicit limit state function and nonlinear analysis , an advanced reliability analysis methods are needed. Monte Carlo simulation (MCS) can be used in this case however, as the number of input variables increases, the time required for MCS also increases, making it a time consuming method especially for complex problems with implicit performance functions. In such cases, MCS-based FORM (First Order Reliability Method) and Artificial Neural Network-based FORM (ANN FORM) have been proposed as alternatives. However, it is important to note that both MCS-FORM and ANN-FORM can also be time-con

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref