Preferred Language
Articles
/
joe-2294
Removal of Cu2+, Pb2+ , And Ni 2+ Ions From Simulated Waste Water By Ion Exchange Method On Zeolite And Purolite C105 Resin
...Show More Authors

The removal of heavy metal ions from wastewater by ion exchange resins ( zeolite and purolite C105), was investigated. The adsorption process, which is pH dependent, shows maximum removal of metal ions at pH 6 and 7 for zeolite and purolite C105 for initial metal ion
concentrations of 50-250 mg/l, with resin dose of 0.25-3 g. The maximum ion exchange capacity was found to be 9.74, 9.23 and 9.71 mg/g for Cu2+, Pb2+, and Ni2+ on zeolite respectively, while on purolite C105 the maximum ion exchange capacity was found to be 9.64 ,8.73 and 9.39 for Cu2+, Pb2+, and Ni2+ respectively. The maximum removal was 97-98% for Cu2+ and Ni2+ and 92- 93% for Pb2+ on zeolite, while it was 93-94% for Cu2+, 96-97% for Ni2+, and 87-88% for Pb2+ on purolite C105. The obtained sorption affinity sequence was Cu 2+> Ni2+> Pb2+ in both resins.
Langmuir isotherm expressions were found to give better fit to the experimental data compared to Freundlich and BET models. Kinetic data correlated well with Lagergren first order kinetic model, indicating the reversible reaction with an equilibrium being established between liquid and solid phase.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
LEAD Removal from Industrial Wastewater by Electrocoagulation process
...Show More Authors

This investigation was carried out to study the treatment and recycling of wastewater in the Battery industry for an effluent containing lead ion. The reuse of such effluent can only be made possible by appropriate treatment method such as electro coagulation.
The electrochemical process, which uses a cell comprised aluminum electrode as anode and stainless steel electrode as cathode was applied to simulated wastewater containing lead ion in concentration 30 – 120 mg/l, at different operational conditions such as current density 0.4-1.2 mA/cm2, pH 6 -10 , and time 10 - 180 minute.
The results showed that the best operating conditions for complete lead removal (100%) at maximum concentration 120 mg/l was found to be 1.2 mA/cm2 cur

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 22 2022
Journal Name
Watre
Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics
...Show More Authors

A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu

... Show More
Crossref (6)
Crossref
Publication Date
Tue Feb 22 2022
Journal Name
Water
Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics
...Show More Authors

A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu

... Show More
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Journal Of Kufa For Chemical Science
systhesis,spectral and kinetic of N2O2macrocycle ligand with divalent metal ions ( Co , Ni and Cu ) complexes
...Show More Authors

Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Ecological Engineering
Chromium Ions Removal by Capacitive Deionization Process – Optimization of the Operating Parameters with Response Surface Methodology
...Show More Authors

An innovative desalination method called electrosorption or capacitive deionization (CDI) has significant benefits for wastewater treatment. This process is performed by using a carbon fiber electrode as a working electrode to remove hexavalent chromium ions from an aqueous solution. The pH, NaCl concentration, and cell voltage were optimized using the Box-Behnken experimental design (BDD) in response surface methodology (RSM) to study the effects and interactions of selected variables. To attain the relationship between the process variables and chromium removal, the experimental data were subjected to an analysis of variance and fitted with a quadratic model. The optimum conditions to remove Cr(VI) ions were: pH of 2, a cell voltage of 4.

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Modeling and Simulation of Cadmium Removal from the Groundwater by Permeable Reactive Barrier Technology
...Show More Authors

The removal of cadmium ions from simulated groundwater by zeolite permeable reactive barrier was investigated. Batch tests have been performed to characterize the equilibrium sorption properties of the zeolite in cadmium-containing aqueous solutions. Many operating parameters such as contact time, initial pH of solution, initial concentration, resin dosage and agitation speed were investigated. The best values of these parameters that will achieved removal efficiency of cadmium (=99.5%) were 60 min, 6.5, 50 mg/L, 0.25 g/100 ml and 270 rpm respectively. A 1D explicit finite difference model has been developed to describe pollutant transport within a groundwater taking the pollutant sorption on the permeable reactive barrier (PRB), which i

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Dental Hypotheses
Evaluation of the Impact of Ozonated Water on Water Sorption and Solubility of Heat Cure Acrylic Resin: An In Vitro Study
...Show More Authors

Introduction: This study aimed to evaluate the impact of ozonated water on water sorption and solubility of heat-cure acrylic resin. Methods: Thirty-three samples of heat-cured acrylic resin were manufactured and divided into three groups: control, immersion for 10 and 20 minutes in ozonated water. Water sorption and water solubility tests were carried out in line with ADA Standard No. 12 for denture-base acrylic resin. Data were analyzed using one-way ANOVA at a significance level of 5%. Results: There was a nonsignificant difference between the control and experimental groups regarding water sorption (P

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Mon Oct 03 2022
Journal Name
Egyptian Journal Of Chemistry
Improving Biogas Production from Rice Husk Waste by Mixing with Pomegranate peels Waste by using Anaerobic Digestion
...Show More Authors

Biogas is one of the most important sources of renewable energy and is considered as an environment friendly energy source. The major goal of this research is to see if rice husk (Rh) waste and pomegranate peels (PP) waste are suitable for anaerobic digestion and what effect NaOH pre-treatment has on biogas generation. Rice husk and pomegranate peels were tested in anaerobic digestion under patch anaerobic conditions as separate wastes as well as blended together in equal proportions. The cumulative biogas output for the blank test (no pretreatment) was 1923 and 2526 ml, respectively using a single rice husk (Rh) and pomegranate peel (PP) substrates. The 50% rice husk digestion and 50% of pomegranate peels for blank test gave the result 224

... Show More
Publication Date
Fri Dec 01 2023
Journal Name
Case Studies In Chemical And Environmental Engineering
Simultaneous electrodeposition of multicomponent of Mn–Co–Ni oxides electrodes for phenol removal by anodic oxidation
...Show More Authors

Electrodeposition of metal oxides on graphite electrodes can improve their ability to remove organic substances. In this work, multicomponent oxides of Mn, Co, and Ni were electrochemically deposited on both the anode and cathode of graphite electrodes to enhance their performance in removing phenol. Formation of the deposit was achieved within 2 h in current densities of 20, 25, 30, and 35 mA/cm2 for better composite properties. The deposited layer was characterized by testing the surface structure, morphology, composition, and roughness. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and Atomic force microscopy (AFM) techniques facilitated these tests. The composite electrodes have synthesized

... Show More
View Publication
Scopus (8)
Crossref (5)
Scopus Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Effect of Ferric Oxide on Electricity Generation and Waste Water Treatment Using Microbial Fuel Cell Technology
...Show More Authors

The aim of research is to show the effect of Ferric Oxide (Fe2O3) on the electricity production and wastewater treatment, since 2.5% of Ferric Oxide (Fe2O3) (heated and non heated) nanoparticles has been used. Characterization of nanoparticles was done using X-ray Diffraction (XRD) and Scan Electron Microscopy (SEM). The influence of acidity was also studied on both wastewater treatmenton the Chemical Oxygen demand (COD) and Biological Oxygen Demand (BOD) and voltage output was studied. From the results, it was infused that the dosage of 0.025 g/l and an initial pH 7 were founded to be optimum for the effective degradation of effluents. The results concluded that the treatment of anaerobic sludge wastewater using Ferric Oxide (Fe2O3) in

... Show More
View Publication Preview PDF
Crossref (1)
Crossref