Trickle bed reactor was used to study the hydrogenation of nitrobenzene over Ni/SiO2 catalyst. The catalyst was prepared using the Highly Dispersed Catalyst (HDC) technique. Porous silica particles (capped cylinders, 6x5.5 mm) were used as catalyst support. The catalyst was characterized by TPR, BET surface area and pore volume, X-ray diffraction, and Raman Spectra. The trickle bed reactor was packed with catalyst and diluted with fine glass beads in order to decrease the external effects such as mass transfer, heat transfer and wall effect. The catalyst bed dilution was found to double the liquid holdup, which increased the catalyst wetting and hence, the gas-liquid mass transfer rate. The main product of the hydrogenation reaction of nitrobenzene was aniline. Reaction operating conditions, i.e., temperature, liquid flow rate, and initial feed concentration were investigated to find their influences on the conversion and rate of nitrobenzene hydrogenation. Under normal conditions without bed dilution, the system was mass transfer controlled. In the diluted reactor, on the other hand, the resistance of mass transfer was nearly absent and the system became under surface kinetic control. The catalyst showed significant deactivation during the reaction period due to the adsorption of intermediate amine products on the surface of the catalyst. The kinetic study revealed that the reaction is zero order with respect to nitrobenzene concentration for the range of concentration between 0.58 to 1.17 mol/L while it was of positive order for the initial concentration less than 0.58 mol/L
In this research the relation between skin resistances and standard penetration test of over consolidated
clay soils has been studied. The research includes doing boreholes at Babil governorate in Iraq to get
undisturbed samples and standard penetration test. Determination skin friction from direct shear test between
smooth concrete and soil was explored in laboratory for design purposes and correlated with standard
penetration test values. In many foundation design problems, the shear strength between soil and
foundation materials were estimated or correlated without any direct methods for measurement.
Twelve strain controlled direct shear tests were performed simulate the shear strength interaction
between smooth c
The Atmospheric Infrared Sounder (AIRS) on EOS/Aqua satellite provides diverse measurements of Methane (CH4) distribution at different pressure levels in the Earth's atmosphere. The focus of this research is to analyze the vertical variations of (CH4) volume mixing ratio (VMR) time-series data at four Standard pressure levels SPL (925, 850, 600, and 300 hPa) in the troposphere above six cities in Iraq from January 2003 to September 2016. The analysis results of monthly average CH4VMR time-series data show a significant increase between 2003 and 2016, especially from 2009 to 2016; the minimum values of CH4 were in 2003 while the maximum values were in 2016. The vertical distribution of CH4<
... Show MoreIn the present study, a powder mixture of elements Ti and Ni was mechanically alloyed in a high energy ball mill. Microstructure of the nanosized amorphous milled product in different stages of milling has been characterized by X- ray diffraction, scanning electron microscopy and differential thermal analysis. We found that time of mechanical alloying is more significant to convert all crystalline structure to the amorphous phase. Nanocrystalline phase was achieved as a result of the mechanical alloying process. The results also indicates that the phase transformation and the grain size occurs in these alloys are controlled by ball milling time
In this paper we generalize Jacobsons results by proving that any integer in is a square-free integer), belong to . All units of are generated by the fundamental unit having the forms
our generalization build on using the conditions
This leads us to classify the real quadratic fields into the sets Jacobsons results shows that and Sliwa confirm that and are the only real quadratic fields in .
An agricultural waste (walnut shell) was undertaken to remove Cu(II) from aqueous solutions in batch and continuous fluidized bed processes. Walnut shell was found to be effective in batch reaching 75.55% at 20 and 200 rpm, when pH of the solution adjusted to 7. The equilibrium was achieved after 6 h of contacting time. The maximum uptake was 11.94mg/g. The isotherm models indicated that the highest determination coefficient belongs to Langmuir model. Cu (II) uptake process in kinetic rate model followed the pseudo-second-order with determination coefficient of 0.9972. More than 95% of the Cu(II) were adsorbed on the walnut shells within 6 h at optimum agitation speed of 800 rpm. The main functional groups responsible for biosorption of
... Show MoreExperimental and numerical studies have been conducted on the effects of bed roughness elements such as cubic and T-section elements that are regularly half-channel arrayed on one side of the river on turbulent flow characteristics and bed erosion downstream of the roughness elements. The experimental study has been done for two types of bed roughness elements (cubic and T-section shape) to study the effect of these elements on the velocity profile downstream the elements with respect to different water flow discharges and water depths. A comparison between the cubic and T-section artificial bed roughness showed that the velocity profile downstream the T-section increased in smooth side from the river and decrease in the rough side
... Show MoreFluidization process is widely used by a great assortment of industries worldwide and represents a trillion dollar industry [6]. They are currently used in separation, classification, drying and mixing of particles, chemical reactions and regeneration processes; one of these processes is the mass transfer from an immersed surface to a gas fluidized bed