A load flow program is developed using MATLAB and based on the Newton–Raphson method,which shows very fast and efficient rate of convergence as well as computationally the proposed method is very efficient and it requires less computer memory through the use of sparsing method and other methods in programming to accelerate the run speed to be near the real time.
The designed program computes the voltage magnitudes and phase angles at each bus of the network under steady–state operating conditions. It also computes the power flow and power losses for all equipment, including transformers and transmission lines taking into consideration the effects of off–nominal, tap and phase shift transformers, generators, shunt capacitors, shunt inductors, line reactors and bus reactors. Thus, overloaded transformers and transmission lines are identified, and remedial measure can be designed and implemented. It also provides the ability of tie lines, area splitting, and contingency analysis.
Any generator station(s) or busbar(s) that exceeds the specified operation limits will be automatically checked and flagged and then the program will automatically suggest the best solution to the problem. It also automatically checks whether the system is sub divided into sub areas or not. If yes, it will find the solution for each area separately. A complete report about the results and the state of the system (the violated generators, busbars, and transmission lines, the required modifications to overcome the violations, the names of the areas splitted,…) will be displayed in working window as well as generating a text file containing all details .
It is important to mention that this program is used by the national control center of the Ministry of Electricity and its efficiency was tested through applying the data of the two major Iraqi networks (400kV and 132kV), the program shows very accurate results and provides efficient notes about the status of the networks
Joint diseases, such as osteoarthritis, induce pain and loss of mobility to millions of people around the world. Current clinical methods for the diagnosis of osteoarthritis include X-ray, magnetic resonance imaging, and arthroscopy. These methods may be insensitive to the earliest signs of osteoarthritis. This study investigates a new procedure that was developed and validated numerically for use in the evaluation of cartilage quality. This finite element model of the human articular cartilage could be helpful in providing insight into mechanisms of injury, effects of treatment, and the role of mechanical factors in degenerative
conditions, this three-dimensional finite element model is a useful tool for understanding of the stress d
Sorption is a key factor in removal of organic and inorganic contaminants from their aqueous solutions. In this study, we investigated the removal of Xylenol Orange tetrasodium salt (XOTS) from its aqueous solution by Bauxite (BXT) and cationic surfactant hexadecyltrimethyl ammonium bromide modified Bauxite (BXT-HDTMA) in batch experiments. The BXT and BXT-HDTMA were characterized using FTIR, and SEM techniques. Adsorption studies were performed at various parameters i.e. temperature, contact time, adsorbent weight, and pH. The modified BXT showed better maximum removal efficiency (98.6% at pH = 9.03) compared to natural Bauxite (75% at pH 2.27), suggesting that BXT-HDTMA is an excellent adsorbent for the removal of XOTS from water. The equ
... Show MoreThe analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical illustrations
To ensure fault tolerance and distributed management, distributed protocols are employed as one of the major architectural concepts underlying the Internet. However, inefficiency, instability and fragility could be potentially overcome with the help of the novel networking architecture called software-defined networking (SDN). The main property of this architecture is the separation of the control and data planes. To reduce congestion and thus improve latency and throughput, there must be homogeneous distribution of the traffic load over the different network paths. This paper presents a smart flow steering agent (SFSA) for data flow routing based on current network conditions. To enhance throughput and minimize latency, the SFSA distrib
... Show MoreTo improve the efficiency of a processor in recent multiprocessor systems to deal with data, cache memories are used to access data instead of main memory which reduces the latency of delay time. In such systems, when installing different caches in different processors in shared memory architecture, the difficulties appear when there is a need to maintain consistency between the cache memories of different processors. So, cache coherency protocol is very important in such kinds of system. MSI, MESI, MOSI, MOESI, etc. are the famous protocols to solve cache coherency problem. We have proposed in this research integrating two states of MESI's cache coherence protocol which are Exclusive and Modified, which responds to a request from reading
... Show More