A load flow program is developed using MATLAB and based on the Newton–Raphson method,which shows very fast and efficient rate of convergence as well as computationally the proposed method is very efficient and it requires less computer memory through the use of sparsing method and other methods in programming to accelerate the run speed to be near the real time.
The designed program computes the voltage magnitudes and phase angles at each bus of the network under steady–state operating conditions. It also computes the power flow and power losses for all equipment, including transformers and transmission lines taking into consideration the effects of off–nominal, tap and phase shift transformers, generators, shunt capacitors, shunt inductors, line reactors and bus reactors. Thus, overloaded transformers and transmission lines are identified, and remedial measure can be designed and implemented. It also provides the ability of tie lines, area splitting, and contingency analysis.
Any generator station(s) or busbar(s) that exceeds the specified operation limits will be automatically checked and flagged and then the program will automatically suggest the best solution to the problem. It also automatically checks whether the system is sub divided into sub areas or not. If yes, it will find the solution for each area separately. A complete report about the results and the state of the system (the violated generators, busbars, and transmission lines, the required modifications to overcome the violations, the names of the areas splitted,…) will be displayed in working window as well as generating a text file containing all details .
It is important to mention that this program is used by the national control center of the Ministry of Electricity and its efficiency was tested through applying the data of the two major Iraqi networks (400kV and 132kV), the program shows very accurate results and provides efficient notes about the status of the networks
The esterification reaction of ethyl alcohol and acetic acid catalyzed by the ion exchange resin, Amberlyst 15, was investigated. The experimental study was implemented in an isothermal batch reactor. Catalyst loading, initial molar ratio, mixing time and temperature as being the most effective parameters, were extensively studied and discussed. A maximum final conversion of 75% was obtained at 70°C, acid to ethyl alcohol mole ratio of 1/2 and 10 g catalyst loading. Kinetic of the reaction was correlated with Langmuir-Hanshelwood model (LHM). The total rate constant and the adsorption equilibrium of water as a function of the temperature was calculated. The activation energies were found to be as 113876.9 and -49474.95 KJ per Kmol of ac
... Show MoreAbstract:
The great importance that distinguish these factorial experiments made them subject a desirable for use and application in many fields, particularly in the field of agriculture, which is considered the broad area for experimental designs applications.
And the second case for the factorial experiment, which faces researchers have great difficulty in dealing with the case unbalance we mean that frequencies treatments factorial are not equal meaning (that is allocated a number unequal of blocks or units experimental per tre
... Show MoreGreenhouses are provide that produce of vegetable in non times seasons production by controlling the various environmental factors that appropriate atmosphere in temperature and humidity for the growth of plants in the plastic houses and owner plastic.
The objective of this research is to study of the most important natural and human factors affecting the Greenhouses in the province of Baghdad and study geographic distribution for the Greenhouses in the province.
Some properties on curriculum geographical descriptive analytical that used in describe and analysis of data and information that could be available from Directorate of agriculture in Baghdad to 2014. As it turns out that district of Mahmudiya acquired (45.3%) of the total
The analysis of survival and reliability considered of topics and methods of vital statistics at the present time because of their importance in the various demographical, medical, industrial and engineering fields. This research focused generate random data for samples from the probability distribution Generalized Gamma: GG, known as: "Inverse Transformation" Method: ITM, which includes the distribution cycle integration function incomplete Gamma integration making it more difficult classical estimation so will be the need to illustration to the method of numerical approximation and then appreciation of the function of survival function. It was estimated survival function by simulation the way "Monte Carlo". The Entropy method used for the
... Show MoreA concept of indoor solar illumination is described and simulated. The solar illumination system is composed of a tracking primary reflector, a selective secondary reflector, a visible light guide and a scattering solid glass tube fixture. Each part of the solar illumination system is optically suited and compatible with other parts to realize high efficiency. The simulation is conducted for Baghdad city for a library hall. Two major days over a year are chosen to investigate the illumination system for acceptable visible light level for reading hall. The two days are: summer solstice day and winter solstice day at 8:00 AM and 12:00 PM for each. Research results showed that the design of the solar system is achieved on the base of minimu
... Show MoreAbstract: This study aims to investigate the backscattering electron coefficient for SixGe1-x/Si heterostructure sample as a function of primary electron beam energy (0.25-20 keV) and Ge concentration in the alloy. The results obtained have several characteristics that are as follows: the first one is that the intensity of the backscattered signal above the alloy is mainly related to the average atomic number of the SixGe1-x alloy. The second feature is that the backscattering electron coefficient line scan shows a constant value above each layer at low primary electron energies below 5 keV. However, at 5 keV and above, a peak and a dip appeared on the line scan above Si-Ge alloy and Si, respectively, close to the interfacing line
... Show MoreThe accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
In this study, the electro-hydraulic servo system for speed control of fixed displacement hydraulic motor using proportional valve and (PID) controller is investigated theoretically ,experimentally and simulation . The theoretical part includes the derivation of the nonlinear mathematical model equation of (valve – motor ) combination system and the derivation of the transfer function for the complete hydraulic system , the stability test of the system during the operation through the transfer function using MATLAB package
V7.1 have been done. An experimental part includes design and built hydraulic test rig and simple PID controller .The best PID gains have been calculated experimentally and simulation, speed control performance te