Methods of speech recognition have been the subject of several studies over the past decade. Speech recognition has been one of the most exciting areas of the signal processing. Mixed transform is a useful tool for speech signal processing; it is developed for its abilities of improvement in feature extraction. Speech recognition includes three important stages, preprocessing, feature extraction, and classification. Recognition accuracy is so affected by the features extraction stage; therefore different models of mixed transform for feature extraction were proposed. The properties of the recorded isolated word will be 1-D, which achieve the conversion of each 1-D word into a 2-D form. The second step of the word recognizer requires, the application of 2-D FFT, Radon transform, the 1-D IFFT,and 1-D discrete wavelet transforms were used in the first proposed model, while discrete multicircularlet transform was used in the second proposed model. The final stage of the proposed models includes the use of the dynamic time warping algorithm for recognition tasks. The performance of the proposed systems was evaluated using forty different isolated Arabic words that are recorded fifteen times in a studio for speaker dependant. The result shows recognition accuracy of (91% and 89%) using discrete wavelet transform type Daubechies (Db1) and (Db4) respectively, and the accuracy score between (87%-93%) was achieved using
discrete multicircularlet transform for 9 sub bands.
The Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the eff ect of the addition sequence, the eff ect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coeffi cient (r) equal 0.9986, coeffi cient of determination (r2) equal to 0.9973, and percentage capita
... Show MoreThe assessment of data quality from different sources can be considered as a key challenge in supporting effective geospatial data integration and promoting collaboration in mapping projects. This paper presents a methodology for assessing positional and shape quality for authoritative large-scale data, such as Ordnance Survey (OS) UK data and General Directorate for Survey (GDS) Iraq data, and Volunteered Geographic Information (VGI), such as OpenStreetMap (OSM) data, with the intention of assessing possible integration. It is based on the measurement of discrepancies among the datasets, addressing positional accuracy and shape fidelity, using standard procedures and also directional statistics. Line feature comparison has been und
... Show MoreSorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.
This paper describes a new finishing process using magnetic abrasives were newly made to finish effectively brass plate that is very difficult to be polished by the conventional machining processes. Taguchi experimental design method was adopted for evaluating the effect of the process parameters on the improvement of the surface roughness and hardness by the magnetic abrasive polishing. The process parameters are: the applied current to the inductor, the working gap between the workpiece and the inductor, the rotational speed and the volume of powder. The analysis of variance(ANOVA) was analyzed using statistical software to identify the optimal conditions for better surface roughness and hardness. Regressions models based on statistical m
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreTreatment of a high strength acidic industrial wastewater was attempted by activated carbon
adsorption to evaluate the feasibility of yielding effluents of reusable qualities. The experimental
methods which were employed in this investigation included batch and column studies. The
former was used to evaluate the rate and equilibrium of carbon adsorption, while the latter was
used to determine treatment efficiencies and performance characteristics. Fixed bed and expanded
bed adsorbers were constructed in the column studies. In this study, the adsorption behavior of acetic acid onto activated carbon was examined as a function of the concentration of the adsorbate, contact time and adsorbent dosage. The adsorption data was mo