Methods of speech recognition have been the subject of several studies over the past decade. Speech recognition has been one of the most exciting areas of the signal processing. Mixed transform is a useful tool for speech signal processing; it is developed for its abilities of improvement in feature extraction. Speech recognition includes three important stages, preprocessing, feature extraction, and classification. Recognition accuracy is so affected by the features extraction stage; therefore different models of mixed transform for feature extraction were proposed. The properties of the recorded isolated word will be 1-D, which achieve the conversion of each 1-D word into a 2-D form. The second step of the word recognizer requires, the application of 2-D FFT, Radon transform, the 1-D IFFT,and 1-D discrete wavelet transforms were used in the first proposed model, while discrete multicircularlet transform was used in the second proposed model. The final stage of the proposed models includes the use of the dynamic time warping algorithm for recognition tasks. The performance of the proposed systems was evaluated using forty different isolated Arabic words that are recorded fifteen times in a studio for speaker dependant. The result shows recognition accuracy of (91% and 89%) using discrete wavelet transform type Daubechies (Db1) and (Db4) respectively, and the accuracy score between (87%-93%) was achieved using
discrete multicircularlet transform for 9 sub bands.
Internet technology has revolutionized the landscape of communication technologies in the modern era. However, because the internet is open to the public, communication security cannot be guaranteed. As a result, data concealment approaches have been developed to ensure confidential information sharing. Various methods have emerged to achieve the goal of secure data communication via multimedia documents. This study proposes a method, which is both adaptable and imperceptible, for concealing a secret text in a color image. From an adaptivity perspective, image corners are detected using the Harris corner detection algorithm and utilized as anchor points for picking the optimal hiding regions of interest using Bezier curve interp
... Show MoreDrag reduction (DR) techniques are used to improve the flow by spare the flow energy. The applications of DR are conduits in oil pipelines, oil well operations and flood water disposal, many techniques for drag reduction are used. One of these techniques is microbubbles. In this work, reduce of drag percent occurs by using a small bubbles of air pumped in the fluid transported. Gasoil is used as liquid transporting in the pipelines and air pumped as microbubbles. This study shows that the maximum value of drag reduction is 25.11%.
Image retrieval is used in searching for images from images database. In this paper, content – based image retrieval (CBIR) using four feature extraction techniques has been achieved. The four techniques are colored histogram features technique, properties features technique, gray level co- occurrence matrix (GLCM) statistical features technique and hybrid technique. The features are extracted from the data base images and query (test) images in order to find the similarity measure. The similarity-based matching is very important in CBIR, so, three types of similarity measure are used, normalized Mahalanobis distance, Euclidean distance and Manhattan distance. A comparison between them has been implemented. From the results, it is conclud
... Show MoreObject tracking is one of the most important topics in the fields of image processing and computer vision. Object tracking is the process of finding interesting moving objects and following them from frame to frame. In this research, Active models–based object tracking algorithm is introduced. Active models are curves placed in an image domain and can evolve to segment the object of interest. Adaptive Diffusion Flow Active Model (ADFAM) is one the most famous types of Active Models. It overcomes the drawbacks of all previous versions of the Active Models specially the leakage problem, noise sensitivity, and long narrow hols or concavities. The ADFAM is well known for its very good capabilities in the segmentation process. In this
... Show MoreThe computer vision branch of the artificial intelligence field is concerned with developing algorithms for analyzing video image content. Extracting edge information, which is the essential process in most pictorial pattern recognition problems. A new method of edge detection technique has been introduces in this research, for detecting boundaries.
Selection of typical lossy techniques for encoding edge video images are also discussed in this research. The concentration is devoted to discuss the Block-Truncation coding technique and Discrete Cosine Transform (DCT) coding technique. In order to reduce the volume of pictorial data which one may need to store or transmit,
... Show MoreIn this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.
Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m
... Show More