Methods of speech recognition have been the subject of several studies over the past decade. Speech recognition has been one of the most exciting areas of the signal processing. Mixed transform is a useful tool for speech signal processing; it is developed for its abilities of improvement in feature extraction. Speech recognition includes three important stages, preprocessing, feature extraction, and classification. Recognition accuracy is so affected by the features extraction stage; therefore different models of mixed transform for feature extraction were proposed. The properties of the recorded isolated word will be 1-D, which achieve the conversion of each 1-D word into a 2-D form. The second step of the word recognizer requires, the application of 2-D FFT, Radon transform, the 1-D IFFT,and 1-D discrete wavelet transforms were used in the first proposed model, while discrete multicircularlet transform was used in the second proposed model. The final stage of the proposed models includes the use of the dynamic time warping algorithm for recognition tasks. The performance of the proposed systems was evaluated using forty different isolated Arabic words that are recorded fifteen times in a studio for speaker dependant. The result shows recognition accuracy of (91% and 89%) using discrete wavelet transform type Daubechies (Db1) and (Db4) respectively, and the accuracy score between (87%-93%) was achieved using
discrete multicircularlet transform for 9 sub bands.
This work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.
Automatic recognition of individuals is very important in modern eras. Biometric techniques have emerged as an answer to the matter of automatic individual recognition. This paper tends to give a technique to detect pupil which is a mixture of easy morphological operations and Hough Transform (HT) is presented in this paper. The circular area of the eye and pupil is divided by the morphological filter as well as the Hough Transform (HT) where the local Iris area has been converted into a rectangular block for the purpose of calculating inconsistencies in the image. This method is implemented and tested on the Chinese Academy of Sciences (CASIA V4) iris image database 249 person and the IIT Delhi (IITD) iris
... Show MoreOptical Character Recognition (OCR) research includes computer vision, artificial intelligence, and pattern recognition. Character recognition has garnered a lot of attention in the last decade due to its broad variety of uses and applications, including multiple-choice test data, business documents (e.g., ID cards, bank notes, passports, etc.), and automatic number plate recognition. This paper introduces an automatic recognition system for printed numerals. The automatic reading system is based on extracting local statistical and geometrical features from the text image. Those features are represented by eight vectors extracted from each digit. Two of these features are local statistical (A, A th), and six are local
... Show MoreAA Abbass, HL Hussein, WA Shukur, J Kaabi, R Tornai, Webology, 2022 Individual’s eye recognition is an important issue in applications such as security systems, credit card control and guilty identification. Using video images cause to destroy the limitation of fixed images and to be able to receive users’ image under any condition as well as doing the eye recognition. There are some challenges in these systems; changes of individual gestures, changes of light, face coverage, low quality of video images and changes of personal characteristics in each frame. There is a need for two phases in order to do the eye recognition using images; revelation and eye recognition which will use in the security systems to identify the persons. The mai
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
The main purpose of the work is to apply a new method, so-called LTAM, which couples the Tamimi and Ansari iterative method (TAM) with the Laplace transform (LT). This method involves solving a problem of non-fatal disease spread in a society that is assumed to have a fixed size during the epidemic period. We apply the method to give an approximate analytic solution to the nonlinear system of the intended model. Moreover, the absolute error resulting from the numerical solutions and the ten iterations of LTAM approximations of the epidemic model, along with the maximum error remainder, were calculated by using MATHEMATICA® 11.3 program to illustrate the effectiveness of the method.