Preferred Language
Articles
/
joe-2283
Compressive Behavior of Fiber Reinforced Concrete Columns Rehabilitated with CFRP Warps
...Show More Authors

Over the last few years, there has been a worldwide increase in the use of composite materials for rehabilitation of deficient reinforced concrete structures. One important application of this technology is the use of Carbon Fiber Reinforced Polymer (CFRP) jacket to provide external confinement of reinforced concrete columns. Square concrete column specimens 100×100×1000 mm with concrete
compressive strength of about 30 and 50 MPa, steel fiber volume fraction 0%, 0.5%, 0.75%, and percentage of longitudinal reinforcement 2.01%, 3.14% and 4.52% were tested until failure in previous research. In this research seven tested columns were repaired and rehabilitated using one layer of CFRP flexible wraps and tested to determine their ultimate load carrying capacity. A comparison between the behavior of column specimens before rehabilitation and after rehabilitation was carried out. The result
show that high strength concrete (HSC) columns show reduction in the maximum load carrying capacity of about 2% - 21%, while the deflection at maximum load significantly increases relative to concrete columns before rehabilitation.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
POLYVINYL ALCOHOL/POLYVINYL CHLORIDE (PVA/PVC) HOLLOW FIBER COMPOSITE NANOFILTRATION MEMBRANES FOR WATER TREATMENT
...Show More Authors

Two different polyvinyl alcohol/polyvinyl chloride (PVA/PVC) hollow fiber composite nanofiltration membranes were prepared after PVC hollow fiber membranes were coated using dip-coating method with PVA aqueous solution, which was composed of PVA, fatty alcohol polyoxyethylene ether (AEO9), and water [PVA/AEO9/water (4:0.5:95.5) wt%]. Effect of two different PVC hollow fiber immersion times in coating solution were studied. Cross-section, internal and external surfaces of the PVC hollow fibers and PVA/PVC composite nanofiltration membranes structures were characterized by scanning electron microscopy (SEM), pure water permeation flux and solutes rejection. It was found that, the coating layer thickness on the outer surface of the 19 wt% P

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 03 2025
Journal Name
Journal Of Baghdad College Of Dentistry
The effect of thermocycling and different pH of artificial saliva on the impact and transverse strength of heat cure resin reinforced with silanated ZrO2 nano-fillers.
...Show More Authors

Background: The aim of this study was to evaluate the effect of thermo cycling and different pH of artificial saliva (neutral, acidic, basic) on impact and transverse strength of heat cure acrylic resin reinforced of with 5% silanated ZrO2 nano fillers. Materials and methods: 120 samples were prepared, 60 samples for impact strength test and another 60 samples for transverse strength test, for each test, samples were divided into two major groups (before and after thermo cycling), then each of these major groups were further subdivided into 3 subgroups according to the pH of prepared artificial saliva (neutral, acidic, basic). Charpy impact device was used for impact strength test and Flexural device was used for transverse strength test. R

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 31 2022
Journal Name
International Review Of Civil Engineering (irece)
Bearing Capacity Factor of Shallow Foundation on Reinforced Sloped Clayey Soil
...Show More Authors

The placement of buildings and structures on/or adjacent to slopes is possible, but this poses a danger to the structure due to failures that occur in slopes. Therefore, a solution or improvement should be determined for these issues of the collapse of the structure as a result of the failure of the slopes. A laboratory model has been built to test the impact of some variables on the bearing capacity factor. The variables include the magnitude of static axial load applied at the center of footing, the depth of embedment, the spacing between geogrid reinforcement layer and the numbering of the geogrid sheet under the footing, the inclination angle of slope clayey soil (β), the spacing between the footing's edge and the slope's end (b/H). Th

... Show More
View Publication
Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Fabrication of Carbon Nanotube Reinforced Al2O3/Cr2O3 Nanocomposites by Coprecipitation Process
...Show More Authors

In this research, the effect of multi-walled carbon nanotubes (MWCNTs) on the alumina/chromia (Al2O3/Cr2O3) nanocomposites has been investigated. Al2O3/Cr2O3-MWCNTs nanocomposites with variable contents of Cr2O3 and MWCNTs were fabricated using coprecipitation process and followed by spark plasma sintering. XRD analysis revealed a good crystallinity of sintered nanocomposites samples and there was only one phase presence of Al2O3-Cr2O3 solid solution. Density, Vickers microhardness, fracture toughness and fracture strength have been measured in the sintered samples. The results show tha

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Journal Of Engineering
Study The Impact of Geopolymer Mortar Reinforced by Micro Steel Fibers
...Show More Authors

In this research, geopolymer mortar had to be designed with 50% to 50% slag and fly ash with and without 1% micro steel fiber at curing temperature of 240℃. The molarity of alkaline solution adjusted with 12 molar sodium hydroxid to sodium silicate was 2 to 1, reaspectivly. The heat of curing increased the geopolymerization proceses of geoplymer mortar, which led to increasing strength, giving the best result and early curing age. The heat was applied for two days by four hours each day. It was discovered in the impact test that the value first crack of each mix was somewhat similar, but the failure increased 72%  for the mixture that did not contain fiber. For the energy observation results it was shown that the mixt

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Applied Engineering Science
Rutting prediction of hot mix asphalt mixtures reinforced by ceramic fibers
...Show More Authors

One of the most severe problems with flexible asphalt pavements is permanent deformation in the form of rutting. Accordingly, the practice of adding fiber elements to asphalt mix to improve performance under dynamic loading has grown significantly in order to prevent rutting distress and ensure a safe and long-lasting road surface. This paper explores the effects of a combination of ceramic fiber (CF), a low-cost, easily available mineral fiber, and thermal insulator fiber reinforced to enhance the Marshall properties and increase the rutting resistance of asphalt mixes at high temperatures. Asphalt mixtures with 0%, 0.75%, 1.5%, and 2.25% CF content were prepared, and Marshall stability and wheel tracking tests were employed to stu

... Show More
Scopus (13)
Crossref (10)
Scopus Crossref
Publication Date
Tue Sep 19 2017
Journal Name
International Journal Of Science And Research
Volumetric Change of Concrete Containing Water Absorption Polymer Balls
...Show More Authors

Polymers have the ability to extract water after they have been added to the mortar or concrete mixture. They provide the absorbed water during hydration functioning as internal water source. Absorption polymers can absorb up to hundred times of their own weight of pure water.This research deals with the use of water absorption polymer balls in concrete and study the volumetric change of these mixes and compared the results with reference mix (without polymers). Samples were cured both in air and in water for the mixes to compare results which show that samples in air behave for expansion while sample in water acted for shrinkage.

Publication Date
Mon Mar 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Synthetic Sacks as Reinforced Fibers in the Thermosetting Composites
...Show More Authors

This study was carried out to investigate the preparation of thermosetting polymeric blend consisting of three adhesive types, namely: epoxy, polyvinyl formal (PVF) and unsaturated polyester. Both of epoxy and PVF were used as a matrix-binder at fixed weight. Whilst unsaturated polyester was used at different weights and added to the matrix so as to produce prepared epoxy-PVF-unsaturated polyester blend. Several experiments were performed at different operating conditions, mixing speed and time at room temperature to identify the most favorable operating conditions. The optimum mixing speed and mixing time for the prepared blend were 500rpm and 5 minutes respectively.

      Solid wastes-synthetic sack fib

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Evaluating Asphalt Concrete Properties by the Implementation of Ultrasonic Pulse Velocity
...Show More Authors

 

In past years, structural pavement solution has been combined with destructive testing; these destructive methods are being replaced by non-destructive testing methods (NDT). Because the destructive test causes damage due to coring conducted for testing and also the difficulty of adequately repairing the core position in the field. Ultrasonic pulse velocity was used to evaluate the strength and volumetric properties of asphalt concrete, of binder course. The impact of moisture damage and testing temperature on pulse velocity has also been studied. Data were analyzed and modeled. It was found that using non-destructive testing represented by pulse velocity could be useful to predict the quality of asphalt c

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Oct 12 2025
Journal Name
Sustainability
Titanium Dioxide for Improved Performance of Reclaimed Asphalt Pavement Aggregates in Concrete
...Show More Authors

This work presents an innovative approach to enhancing the performance of concrete with reclaimed asphalt pavement (RAP) aggregates using titanium dioxide (TiO2) nanoparticles. Traditional limestone coarse aggregates were partially replaced with 30% and 50% RAP aggregates; a subset of mixtures containing RAP aggregates was treated with TiO2 nanoparticles. The rheological, mechanical, and long-term properties of concrete, along with changes in its chemical composition following the addition of RAP and TiO2, were evaluated. Results revealed that using 30% and 50% RAP in concrete mixtures reduced their compressive strength by 18% and 27%, respectively. However, using TiO2 in those mixtures enhanced their compressive strength by 8.7% an

... Show More
View Publication
Scopus Clarivate Crossref