Reservoir fluids properties are very important in reservoir engineering computations such as material balance calculations, well testing analyses, reserve estimates, and numerical reservoir simulations. Isothermal oil compressibility is required in fluid flow problems, extension of fluid properties from values at the bubble point pressure to higher pressures of interest and in material balance calculations (Ramey, Spivey, and McCain). Isothermal oil compressibility is a measure of the fractional change in volume as pressure is changed at constant temperature (McCain). The most accurate method for determining the Isothermal oil compressibility is a laboratory PVT analysis; however, the evaluation of exploratory wells often require an estimate of the fluid behavior prior to obtaining a representative reservoir sample. Also, experimental data is often unavailable.Empirical correlations are often used for these purposes.
This paper developed a new mathematical model for calculating undersaturated oil compressibility using 129 experimentally obtained data points from the PVT analyses of 52 bottom hole fluid samples from Mishrif reservoirs in the southern Iraqi oil fields. The new undersaturated oil compressibility correlation developed using Statistical Analysis System (SAS) by applying nonlinear multiple regression method. It was found that the new correlation estimates undersaturated oil compressibility of Mishrif reservoir crudes in the southern Iraqi oil fields much better than the published ones. The average absolute relative error for the developed correlation is 7.16%.
Derivatives of Schiff-bases possess a great importance in pharmaceutical chemistry. They can be used for synthesizing different types of bioactive compounds. In this paper, derivatives of new Schiff bases have been synthesized from several serial steps. The acid (I) was synthesized from the reaction of dichloroethanoic acid with 2 moles of p-aminoacetanilide. New acid (I) converted to its ester (II) via the reaction of (I) with dimethyl sulphate in the present of anhydrous of sodium carbonate and dry acetone. Acid hydrazide (III) has been synthesized by adding 80% of hydrazine hydrate to the new ester using ethanol as a solvent. The last step included the preparation of new Schiff-bases (IV-VIII) by the reaction of acid hydrazide with app
... Show MoreDerivatives of Schiff-bases possess a great importance in pharmaceutical chemistry. They can be used for synthesizing different types of bioactive compounds. In this paper, derivatives of new Schiff bases have been synthesized from several serial steps. The acid (I) was synthesized from the reaction of dichloroethanoic acid with 2 moles of p-aminoacetanilide. New acid (I) converted to its ester (II) via the reaction of (I) with dimethyl sulphate in the present of anhydrous of sodium carbonate and dry acetone. Acid hydrazide (III) has been synthesized by adding 80% of hydrazine hydrate to the new ester using ethanol as a solvent. The last step included the preparation of new Schiff-bases (IV-VIII) by the reaction of acid hydrazide with
... Show MoreIn this paper, an estimate has been made for parameters and the reliability function for Transmuted power function (TPF) distribution through using some estimation methods as proposed new technique for white, percentile, least square, weighted least square and modification moment methods. A simulation was used to generate random data that follow the (TPF) distribution on three experiments (E1 , E2 , E3) of the real values of the parameters, and with sample size (n=10,25,50 and 100) and iteration samples (N=1000), and taking reliability times (0< t < 0) . Comparisons have been made between the obtained results from the estimators using mean square error (MSE). The results showed the
... Show MoreAbstract
In this paper, fatigue damage accumulation were studied using many methods i.e.Corton-Dalon (CD),Corton-Dalon-Marsh(CDM), new non-linear model and experimental method. The prediction of fatigue lifetimes based on the two classical methods, Corton-Dalon (CD)andCorton-Dalon-Marsh (CDM), are uneconomic and non-conservative respectively. However satisfactory predictions were obtained by applying the proposed non-linear model (present model) for medium carbon steel compared with experimental work. Many shortcomings of the two classical methods are related to their inability to take into account the surface treatment effect as shot peening. It is clear that the new model shows that a much better and cons
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThis paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More