This research presents a model for surveying networks configuration which is designed and called a Computerized Integrated System for Triangulation Network Modeling (CISTNM). It focuses on the strength of figure as a concept then on estimating the relative error (RE) for the computed side (base line) triangulation element. The CISTNM can compute the maximum elevations of the highest
obstacles of the line of sight, the observational signal tower height, the contribution of each triangulation station with their intervisibility test and analysis. The model is characterized by the flexibility to select either a single figure or a combined figures network option. Each option includes three other implicit options such as: triangles, quadrilaterals, and central-point figures (which is to be subdivided into: triangle; quadrilateral, and pentagon). The model also has the property of the diverse modes of display for the output results; i.e. the results can be displayed in the shape of TwoDimensional (2-D) and Three- Dimensional (3-D) representations. Visual Basic is the software depended as a main core in designing CISTNM to draw the suggested network in 2-D to display the network point positions and formations, and it can be linked with the available software such as ArcMap (GIS). The input data which is used as an application of the targeted geodetic surveying techniques (triangulation) is Chamchamal region as a case study in this research. The area lies in the north of Iraq. The results obtained after this application and verification, have proved that the CISTNM
can perform the required task easily and accurately.
The ground-state properties of exotic 18N and 20F nuclei, including the neutron, proton and matter densities and related radii are investigated using the two-body model of within Gaussian (GS) and Woods Saxon (WS) wave functions. The long tail is evident in the computed neutron and matter densities of these nuclei. The plane wave Born approximation (PWBA) is calculate the elastic form factors of these exotic nuclei. The variation in the proton density distributions due to the presence of the extra neutrons in 18N and 20F leads to a major difference between the elastic form factors of these exotic nuclei and their stable isotopes 14N and 19F. The reaction c
... Show MoreThis research aims to identify the impact of Daniel's model on the development of critical thinking. In order to achieve this objective, the following hypotheses are formulated: 1. There is no statistically significant difference at the significance level (0.05) between the average differences in the posttest scores of the experimental group taught according to Daniel's model and the control group taught according to the traditional method in the measure of critical thinking. 2. There is no statistically significant difference at the significance level (0.05) between the average differences in the preand post-tests scores of the experimental group taught according to Daniel's model in the measure of critical thinking. The current research i
... Show MoreStructure of unstable 21,23,25,26F nuclei have been investigated
using Hartree – Fock (HF) and shell model calculations. The ground
state proton, neutron and matter density distributions, root mean
square (rms) radii and neutron skin thickness of these isotopes are
studied. Shell model calculations are performed using SDBA
interaction. In HF method the selected effective nuclear interactions,
namely the Skyrme parameterizations SLy4, Skeσ, SkBsk9 and
Skxs25 are used. Also, the elastic electron scattering form factors of
these isotopes are studied. The calculated form factors in HF
calculations show many diffraction minima in contrary to shell
model, which predicts less diffraction minima. The long tail
The High Power Amplifiers (HPAs), which are used in wireless communication, are distinctly characterized by nonlinear properties. The linearity of the HPA can be accomplished by retreating an HPA to put it in a linear region on account of power performance loss. Meanwhile the Orthogonal Frequency Division Multiplex signal is very rough. Therefore, it will be required a large undo to the linear action area that leads to a vital loss in power efficiency. Thereby, back-off is not a positive solution. A Simplicial Canonical Piecewise-Linear (SCPWL) model based digital predistorters are widely employed to compensating the nonlinear distortion that introduced by a HPA component in OFDM technology. In this paper, the genetic al
... Show MoreA three-dimensional (3D) model extraction represents the best way to reflect the reality in all details. This explains the trends and tendency of many scientific disciplines towards making measurements, calculations and monitoring in various fields using such model. Although there are many ways to produce the 3D model like as images, integration techniques, and laser scanning, however, the quality of their products is not the same in terms of accuracy and detail. This article aims to assess the 3D point clouds model accuracy results from close range images and laser scan data based on Agi soft photoscan and cloud compare software to determine the compatibility of both datasets for several applications. College of Scien
... Show MoreSand production in unconsolidated reservoirs has become a cause of concern for production engineers. Issues with sand production include increased wellbore instability and surface subsidence, plugging of production liners, and potential damage to surface facilities. A field case in southeast Iraq was conducted to predict the critical drawdown pressures (CDDP) at which the well can produce without sanding. A stress and sanding onset models were developed for Zubair reservoir. The results show that sanding risk occurs when rock strength is less than 7,250 psi, and the ratio of shear modulus to the bulk compressibility is less than 0.8 1012 psi2. As the rock strength is increased, the sand free drawdown and depletion becomes larger. The CDDP
... Show MoreThe need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2, 0, 0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlat
... Show MoreIn this paper, the restricted least squares method is employed to estimate the parameters of the Cobb-Douglas production function and then analyze and interprete the results obtained. A practical application is performed on the state company for leather industries in Iraq for the period (1990-2010). The statistical program SPSS is used to perform the required calculations.
The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA
... Show MoreSolar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation
... Show More