Preferred Language
Articles
/
joe-2274
Nonlinear Analysis on Torsional Strengthening Of Rc Beams Using Cfrp Laminates
...Show More Authors

This research is devoted to investigate the behavior and performance of reinforced concrete beams strengthened with externally bonded Carbon Fiber Reinforced Polymer (CFRP) laminates under the effect of torsion. In this study a theoretical analysis has been conducted using finite element code ANSYS. Six previously tested beams are used to investigate reinforced concrete beams behavior
under torsion, two of them are solid and the rest are box-section beams. Also, two beams are without CFRP reinforcement, which are used as control beams for the strengthened one, and the other four beams are strengthened with CFRP laminates with different number of layers and spacing. Numerical investigation is conducted on these beams, and comparisons between the available experimental results for these beams and numerical results from the current study are made. Conclusions from these comparisons are presented and discussed. An increase of about 15.6% in the ultimate torque for the solid beam and of about 9.8% in the ultimate torque for the box-section beam is observed after using the CFRP strips. A parametric study is carried out to study the torsional behavior of RC beams having different number of CFRP layers and concrete compressive strength; also U-wrap for the CFRP configuration is investigated.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Aug 07 2022
Journal Name
Engineering, Technology & Applied Science Research Etasr
Flexural Strengthening of Prestressed Girders with Partially Damaged Strands Using Enhancement of Carbon Fiber Laminates by End Sheet Anchorages
...Show More Authors

This paper examines the impact of flexural strengthening on the percentage of damaged strands in internally unbonded tendons in partially prestressed concrete beams (0, 14.28%, and 28.57%) and the recovering conditions using CFRP composite longitudinal laminates at the soffit, and end anchorage U-wrap sheets to restore the original flexural capacity and mitigate the delamination of the soffit of longitudinal Carbon Fiber Reinforced Polymer (CFRP) laminates. The composition of the laminates and anchors affected the stress of the CFRP, the failure mode, and thus the behavior of the beam. The experimental results revealed that the usage of CFRP laminates has a considerable impact on strand strain, particularly when anchors are employed

... Show More
Crossref (10)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
E3s Web Of Conferences 318, 03002 (2021)
A Comparative Study on Behavior of RC Columns Strengthened by CFRP and Steel Jacket
...Show More Authors

This paper studies the behavior of axially loaded RC columns which are confined with carbon fiber reinforced polymers’ sheet (CFRP) and steel jackets (SJ). The study is based on twelve axially loaded RC columns tested up to failure. It is divided into three schemes based on its strengthening type; each scheme has four columns. The main parameters in this study were the compressive strength of the concrete and steel reinforcement ratio. Furthermore, the results of the experimental test showed a substantial enhancement in the column's load-carrying capacity. When compared to the original columns, the CFRP sheet had a significant effect on improving the ductility of the column by increasing the axial deformation by about 59.2 to 95.7

... Show More
Scopus Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Journal Of Engineering
Numerical Study of Composite Concrete Castellated Double Channel Beams with Strengthening Techniques
...Show More Authors

Current numerical research was devoted to investigating the effect of castellated steel beams without and with strengthening. The composite concrete asymmetrical double hot rolled steel channels bolted back to back to obtain a built-up I-shape form are used in this study. The top half part of the steel is smaller than the bottom half part, and the two parts were connected by bolting and welding. The ABAQUS/2019 program employed the same length and conditions of loading for four models: The first model is the reference without castellated and strengthening; the second model was castellated without strengthened; the third model was castellated and strengthened with reactive powder concrete encased in the

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Composite Structures
Bond behaviour between CFRP laminates and steel members under different loading rates
...Show More Authors

Carbon fibre reinforced polymers are widely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behaviour between CFRP laminates and steel members under impact loading. This paper shows the effect of different load rates from quasi-static to 300 × 103 mm/min on this bond. Two types of CFRP laminate, CFK 150/2000 and CFK 200/2000, were used to strengthen steel joints using Araldite 420 epoxy. The results show a significant bond strength enhancemen

... Show More
Scopus (71)
Crossref (59)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Nonlinear Finite Element Analysis of Steel Fiber Reinforced Concrete Deep Beams With and Without Opening
...Show More Authors

This paper presents a nonlinear finite element modeling and analysis of steel fiber reinforced concrete (SFRC) deep beams with and without openings in web subjected to two- point loading. In this study, the beams were modeled using ANSYS nonlinear finite element
software. The percentage of steel fiber was varied from 0 to 1.0%.The influence of fiber content in the concrete deep beams has been studied by measuring the deflection of the deep beams at mid- span and marking the cracking patterns, compute the failure loads for each deep beam, and also study the shearing and first principal stresses for the deep beams with and without openings and with different steel fiber ratios. The above study indicates that the location of openings an

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Apr 19 2021
Journal Name
Bridge Maintenance, Safety, Management, Life-cycle Sustainability And Innovations
Flexure strengthening of concrete bridge girders with concavely curved soffit using near-surface-mounted CFRP bars
...Show More Authors

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Materials Today
Behavior of RC columns strengthened by combined (CFRP and steel jacket)
...Show More Authors

Scopus (8)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings Journal
Improving torsional – Flexural resistance of concrete beams reinforced by hooked and straight steel fibers
...Show More Authors

Scopus (7)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Structural Concrete
Enhancement of RC T‐beams toughness using laced stirrups reinforcement for blast response predictions
...Show More Authors

Publication Date
Wed Dec 28 2022
Journal Name
Structural Concrete
Enhancement of RC T‐beams toughness using laced stirrups reinforcement for blast response predictions
...Show More Authors
Abstract<p>The dynamic behavior of laced reinforced concrete (LRC) T‐beams could give high‐energy absorption capabilities without significantly affecting the cost, which was offered through a combination of high strength and ductile response. In this paper, LRC T‐beams, composed of inclined continuous reinforcement on each side of the beam, were investigated to maintain high deformations as predicted in blast resistance. The beams were tested under four‐point loading to create pure bending zones and obtain the ultimate flexural capacities. Transverse reinforcement using lacing reinforcement and conventional vertical stirrups were compared in terms of deformation, strain, and toughness changes of the tes</p> ... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref