An experimental and numerical study has been carried out to investigate the heat transfer by natural convection and radiation in a two dimensional annulus enclosure filled with porous media (glass beads) between two horizontal concentric cylinders. The outer cylinders are of (100, 82 and70mm) outside diameters and the inner cylinder of 27 mm outside diameter with (or without) annular fins attached to it. Under steady state condition; the inner cylinder surface is maintained at a high temperature by applying a uniform heat flux and the outer cylinder surface at a low temperature inside a freezer. The experiments were carried out for an annulus filled with
glass beads at a range of modified Rayleigh number (4.9 ≤ Ra≤ 69), radiation parameter (0<Rd<10), with fin length of (Hf=3, 7 and 11mm), with radius ratios of (Rr=(r1/r2) =0.1405,0.2045, 0.293 and 0.3649 ), number of fins (n=0, 12, 23 and 45). Finite difference method with Boussinesq's approximation is used to solve the continuity, energy and momentum equations.
The numerical solution is capable of calculating the streamline, the temperature field, the velocity field, the local and average Nusselt number. A computer program in Mat lab has been built to carry out the numerical solution. The numerical study was done for a range of modified Rayleigh number (4.9 ≤ Ra ≤ 300). Results show that the average Nusselt number is nearly constant for Ra less than 100 and increased with an increase in modified Rayleigh number.
Nusselt number hardly affected by glass beads size and insignificant affected by Rd for Ra less than 100. Decreasing Rr cause clearly increase in average Nusselt number and increasing fin length or fin number decrease heat transfer.
A localized stenosis or aneurysm is a discontinuity that presents the pulse wave produced by the contracting heart with a reflection site. However, neither wave speed ( c) in these discontinuities nor the size of reflection in relation to the size of the discontinuity has been adequately studied before. Therefore, the aim of this work is to study the propagation of waves traversing flexible tubes in the presence of aneurysm and stenosis in vitro. We manufactured different sized four stenosis and four aneurysm silicone sections, connected one at a time to a flexible ‘mother’ tube, at the inlet of which a single semi-sinusoidal wave was generated. Pressure and velocity were measured simultaneously 25 cm downstream the inlet of th
... Show MoreWith the spread of globalization, the need for translators and scholars has grown, as translation is the only process that helps bridge linguistic gaps. Following the emergence of artificial intelligence (AI), a strong competitor has arisen to the translators, sweeping through all scientific and professional fields, including translation sector, with a set of tools that aid in the translation process. The current study aims to investigate the capability of AI tools in translating texts rich in cultural variety from one language to another, specifically focusing on English-Arabic translations, through qualitative analysis to uncover cultural elements in the target language and determine the ability of AI tools to preserve, lose, or alter the
... Show MoreBackground: Neudesin is a peptide secreted in brain and adipose tissues that has neural and metabolic functions. Its role as regulator of energy expenditure leads to assumption that its level may be regulated depending on thyroid gland pathology. Objective: This study aimed to investigate serum neudesin levels in patients with thyroidism and to evaluate1 any possible relationship between plasma neudesin levels and thyroid hormone levels. Methods: The study included 100 women with newly diagnosed thyroidisim were subdivided into two groups: hyperthyroidism group (50 female patients with age ranged from 18 to 60 years) and hypothyroidism group (50 female patients with age ranged from 18 to 75 years). A control group (30 healthy females with a
... Show MoreA dynamic analysis method has been developed to investigate and characterize embedded delamination on the dynamic response of composite laminated structures. A nonlinear finite element model for geometrically large amplitude free vibration intact plate and delamination plate analysis is presented using higher order shear deformation theory where the nonlinearity was introduced in the Green-Lagrange sense. The governing equation of the vibrated plate were derived using the Variational approach. The effect of different orthotropicity ratio, boundary condition and delamination size on the non-dimenational fundamental frequency and frequency ratios of plate for different stacking sequences are studied. Finally th
... Show MoreThis paper deals with the Magnetohydrodynyamic (Mill)) flow for a viscoclastic fluid of the generalized Oldroyd-B model. The fractional calculus approach is used to establish the constitutive relationship of the non-Newtonian fluid model. Exact analytic solutions for the velocity and shear stress fields in terms of the Fox H-function are obtained by using discrete Laplace transform. The effect of different parameter that controlled the motion and shear stress equations are studied through plotting using the MATHEMATICA-8 software.
In this study, polymeric composites were prepared from unsaturated polyester as a base material with glass powder (fluorescent) in different weight ratios (4, 6, 8, 10,and 11%) as a support material and after comparison before and after reinforcement of the prepared composites, an increase was found. In the values of mechanical properties (hardness, compressive strength), the shock resistance values decreased, but an increase in temperature leads to an increase in the values of shock resistance, as well as the values of compressive strength And it reduces the hardness value.