In data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.
The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.
Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum method and Modified 2D-Checksum. In 2D-checksum method, summing process was done for 7×7 patterns in row direction and then in column direction to result 8×8 patterns. While in modified method, an additional parity diagonal vector was added to the pattern to be 8×9. By combining the benefits of using single parity (detecting odd number of error bits) and the benefits of checksum (reducing the effect of 4-bit errors) and combining them in 2D shape, the detection process was improved. By contaminating any sample of data with up to 33% of noise (change 0 to 1 and vice versa), the detecting process in first method was improved by approximately 50% compared to the ordinary traditional two dimensional-parity method and gives best detection results in second novel method
The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio
... Show MoreThe removal of turbidity from produced water by chemical coagulation/flocculation method using locally available coagulants was investigated. Aluminum sulfate (alum) is selected as a primary coagulant, while calcium hydroxide (lime) is used as a coagulant aid. The performance of these coagulants was studied through jar test by comparing turbidity removal at different coagulant/ coagulants aid ratio, coagulant dose, water pH, and sedimentation time. In addition, an attempt has been made to examine the relationship between turbidity (NTU) and total suspended solids (mg/L) on the same samples of produced water. The best conditions for turbidity removal can be obtained at 75% alum+25% lime coagulant at coagulant dose of 80 m
... Show Moreلقد كان حرص المؤلف على إصدار هذا الكتاب نابعا ً من قناعة تامة بأن مجال التقويم والقياس بحاجة إلى كتاب علمي حديث يتناول عرض أدوات الاختبار والقياس والمتمثلة بالصدق والثبات ويتسم بالوضوح في التعبير عن المفاهيم والمصطلحات والأنواع لكل منها ليكون وسيلة مبسطة بأيدي الأساتذة والباحثين وطلبتي الدراسات العليا الماجستير والدكتوراه لإستخراج صدق وثبات الاختبارات والمقاييس بطرق إحصائية متقدمة من خلال إستخدام البرنا
... Show MoreObjective: To evaluate two kinds of extraction (aqueous and ethanolic) for coriander using seeds, leaves and stems and
studying their antibacterial activity against nine different microorganisms.
Methodology: Coriander was selected to carry out this study. Seeds, leaves and stems were collected from local markets in
Baghdad then dried in shade for at least 10 days and grinded to fine powder. Aqueous hot extracts for 1hr. at (50
c) and
cold extracts for 24 hrs at (4
c) were performed by using seeds, leaves and stems then studied antibacterial effect against
nine different microorganisms by using well diffusion technique. Cold aqueous extracts of coriander seeds for 48 hrs. and
72 hrs and ethanolic extraction
The current study deals with the performance of constructed wetland (CW) incorporating a microbial fuel cell (MFC) for wastewater treatment and electricity generation. The whole unit is referred to as CW-MFC. This technique involves two treatments; the first is an aerobic treatment which occurs in the upper layer of the system (cathode section) and the second is anaerobic biological treatment in the lower layer of the system (anode section). Two types of electrode material were tested; stainless steel and graphite. Three configurations for electrodes arrangement CW-MFC were used. In the first unit of CW-MFC, the anode was graphite plate (GPa) and cathode was also graphite plate (GPc), in the second CW-MFC unit, the anode was stainless steel
... Show MoreThe accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images