An agricultural waste (walnut shell) was undertaken to remove Cu(II) from aqueous solutions in batch and continuous fluidized bed processes. Walnut shell was found to be effective in batch reaching 75.55% at 20 and 200 rpm, when pH of the solution adjusted to 7. The equilibrium was achieved after 6 h of contacting time. The maximum uptake was 11.94mg/g. The isotherm models indicated that the highest determination coefficient belongs to Langmuir model. Cu (II) uptake process in kinetic rate model followed the pseudo-second-order with determination coefficient of 0.9972. More than 95% of the Cu(II) were adsorbed on the walnut shells within 6 h at optimum agitation speed of 800 rpm. The main functional groups responsible for biosorption of Cu(II) onto walnut shell were hydroxyl, carbonyl,carboxylate, carboxylic acids, alcohols groups, and aromatic compounds. In continuous system, fluidized bed column at 20 , and pH 7 was carried out to study the effects of various parameters like (flow rate,bed depth, and initial concentration). The time of breakthrough was 97 min when the initial concentration (Co= 20mg/l), bed depth (L=10cm), and flowrate (Q=10l/h)
This project introduces a prospective material for photonic laser applications. The material is olive oil which is classified as organic compound, having a good nonlinear optical properties candidate to be used in photonic applications. A high purity sample of olive oil has been used. The theoretical calculation to generate third harmonic wave using olive oil has been determine using MATLAB program. THG (λ=355nm) intensity has been determined at two cases of sample thicknesses 1mm and 10mm. The minimum threshold incident intensity to obtain THG intensity are equal Iω=7530 mW/cm2 at L=1mm and Iω= 6220 mW/cm2 at L=10mm. The possibility of generation of third harmonic in olive oil inside
... Show MoreThe agriculture around the world faced many difficulties and the important was to reduce inputs of chemical fertilizers and pesticides and increase the total yield specially with the continuous grow of populations numbers at the world expected to reach more than 9 billion by 2050. In other hand there are other problems which make the challenges bigger such as wars, biotic and abiotic stress, and diseases. The scientists tried to find solutions by using Nano-fertilization which consider a modern way to quickly grow up the yield and decrease use the chemicals. The use of nanotechnology may be destructive on human and the environment due to fast accumulation in the tissues of alive bodie
The assessment of the environmental impact of the cement industry using the Leopold Matrix is to determine the negative and positive impacts on the environment resulting from this industry, and what are the long-term and short-term effects, direct and indirect, and the amount of these effects and potential risks, and that this evaluation process is done through a number of methods, including Matrix method, including (Leopold).
The importance of the research because the cement occupies is of great importance in the world, especially in our country, Iraq, in the sector of construction and modernity, and the toxic emissions and solid waste produced by the production of this material. <
... Show MoreStone columns are widely used globally due to theirversatility and relative wide applicability to treat different soil and foundation situations but much of the research undertaken to date has focused on their use in soft soils. In countries like Iraq the use of stone columns is still limited from a practical point of view, chiefly as many other soil conditions are commonly encountered. These include collapsible soils: soils that are prone to relatively rapid volume compressions (through collapse of metastable fabrics) that occur due to the action of load and/or increases in water content. Recent work has opened up the possibility to use stone columns in these soils by the use of encasement, thereby overcoming the impact of loss of lateral
... Show MoreForward osmosis (FO) process was applied to concentrate the orange juice. FO relies on the driving force generating from osmotic pressure difference that result from concentration difference between the draw solution (DS) and orange juice as feed solution (FS). This driving force makes the water to transport from orange juice across a semi-permeable membrane to the DS without any energy applied. Thermal and pressure-driven dewatering methods are widely used, but they are prohibitively energy intensive and hence, expensive. Effects of various operating conditions on flux have been investigated. Four types of salts were used in the DS, (NaCl, CaCl2, KCl, and MgSO4) as osmotic agent and the experiments were performed at the concentration of
... Show MoreThis research was aimed to study the osmotic efficiency of the draw solutions and the factors affecting the performance of forward osmosis process : The draw solutions used were magnesium sulfate hydrate (MgSO4.7H2O) pojtassium chloride (KCL), calcium chloride (CaCl2) and ammonium bicarbonate (NH4HCO3). It was found that water flux increases with increasing draw solution concentration, and feed solution flow rate and decreases with increasing draw solution flow rate and feed solution concentration. And also found that the efficiency of the draw solutions is in the following order:
CaCl2> KCI > NH4HCO3> MgSO4.7H