A research was conducted to determine the feasibility of using adsorption process to remove boron from aqueous solutions using batch technique. Three adsorbent materials; magnesium, aluminum and iron oxide were investigated to find their abilities for boron removal. The effects of operational parameters on boron removal efficiency for each material were determined.
The experimental results revealed that maximum boron removal was achieved at pH 9.5 for magnesium oxide and 8 for aluminum and iron oxide. The percentage of boron adsorbed onto magnesium,aluminum and iron oxide reaches up to 90, 42.5 and 41.5% respectively under appropriate conditions. Boron concentration in effluent water after adsorption via magnesium oxide comply with the allowable
concentration according to WHO and the Iraqi drinking water guidelines, i.e. below 0.5 mg/l. Aluminum and iron oxide yield effluent water with boron concentration more than allowable limits. Accordingly,magnesium oxide is more suitable as adsorbent for boron removal from water; for its high adsorbent capacity and high removal ability for boron compared with aluminum and iron oxide.
The researchers have tried to focus on how to determine the number of pipes that are present in one obtained hyperbola in radargram profile. Ground Penetration Radar (GPR) survey was performed to distinguish between two zero-spaced iron pipes in radargram. The field work was carried out by constructing artificial rectangular models with dimensions of length, width, and depth equal to 10.0, 1.0, 0.65 meter respectively that filled with dry clastic mixture deposit, three twin sets of air filled iron pipes of 15.24 cm (6 inch) diameter were buried horizontally and vertically inside the mixture at different distances together. Visual and Numerical interpretation were chosen to get the best results. In the visual interpretation, the amplitude
... Show MoreThe researchers have tried to focus on how to determine the number of pipes that are present in one obtained hyperbola in radargram profile. Ground Penetration Radar (GPR) survey was performed to distinguish between two zero-spaced iron pipes in radargram. The field work was carried out by constructing artificial rectangular models with dimensions of length, width, and depth equal to 10.0, 1.0, 0.65 meter respectively that filled with dry clastic mixture deposit, three twin sets of air filled iron pipes of 15.24 cm (6 inch) diameter were buried horizontally and vertically inside the mixture at different distances together. Visual and Numerical interpretation were chosen to get the best results. In the visual interpretation, the amplitude
... Show MoreThis study was undertaken to introduce a fast, accurate, selective, simple and environment-friendly colorimetric method to determine iron (II) concentration in different lipstick brands imported or manufactured locally in Baghdad, Iraq. The samples were collected from 500-Iraqi dinars stores to establish routine tests using the spectrophotometric method and compared with a new microfluidic paper-based analytical device (µPAD) platform as an alternative to cost-effective conventional instrumentation such as Atomic Absorption Spectroscopy (AAS). This method depends on the reaction between iron (II) with iron(II) selective chelator 1, 10-phenanthroline(phen) in the presence of reducing agent hydroxylamine (HOA) and sodium acetate (NaOAc) b
... Show MoreBackground: Polycythemia (or polycythaemia or erythrocytosis) is a condition in which there is a net increase in the total number of blood cells, primarily red blood cells, in the body. The overproduction of red blood cells may be due to a primary process in the bone marrow (a so-called myeloproliferative syndrome), or it may be a reaction to chronically low oxygen levels or, rarely, a malignancy. Minerals are the building blocks of our bodies. They are required for body structure, fluid balance, protein structures and to produce hormones. They are the key for the health of every body system and function. They act as co-factors, catalysts or inhibitors of all enzymes in the body .
Patients and Methods: B
Abstract
The present study investigates the effect of acetic acid on corrosion behavior and its potential of hydrothermally sealed anodized AA2319-Al-alloys. Anodizing treatment was performed in stagnant phosphoric acid electrolyte with or without addition of acetic acid. Hydrothermal sealing was carried out in boiling water for each anodized specimen. The open circuit potential of the unsealed and sealed anodized samples was examined using open circuit potential measurement for the purpose of starting in scanning polarization diagrams. The potentiostatic polarization technique measurements were performed to assess corrosion behavior and sealing quality (i.e., degree of sealing) of
... Show MoreAn effort is made to study the effect of composite nanocoating using aluminum-9%wt silicon alloys reinforced with different percentage (0.5,1,2,4)wt.% of carbon nanotubes (CNTs) using plasma spraying. The effect of this composite on corrosion behavior for AA6061-T6 by extrapolation Tafel test in sea water 3.5wt% NaCl was invested. Many specimens where prepared from AA6061-T6 by the dimension (15x15x3)mm as this first set up and other steps include coating process, X-ray diffraction and SEM examination .The results show the CNTs increase the corrosion rate of the nanocomposite coatings with increasing the weight percentage of CNTs within the Al-Si matrix. Al-9wt%Si coating layer itself has less corrosion rate if compared with both n
... Show MoreFriction stir spot welding (FSSW) is a relatively new welding process that may have significant advantages compared to the fusion processes as follows joining of conventionally non-fusion weldable alloys, reduced distortion and improved mechanical properties of weldable alloys joints due to the pure solidstate joining of metals. In this paper, a three-dimensional model based on finite element analysis is used to study the thermal history in the spot-welding of aluminum alloy 2024. The model take place the thermomechanical property on the process of the welded metals. The thermal history and the evolution results with numerical model at the measured point in the friction stirred spot weld have a good matching, then the prediction of the t
... Show MoreThe research aims to investigate the effects of GMAW or MIG welding process on the mechanical properties of dissimilar aluminum alloys 2024-T351 and AA 6061- T651. A series of experimental techniques have been conducted to evaluate mechanical properties of the alloys, by carrying out hardness, tensile and bending tests for welded and un-welded specimens.
Metal inert gas (MIG) has been carried out on sheet metal using ER- 4043(AlSi5) as a filler metal and argon as shielded gas. The welded joints were tested by X-ray radiography and Faulty pieces were excluded.
Welding joints without defects are subjected to heat treatment including heating the joints in furnace to 170 °C for half an hour then air cooling to rel
... Show MoreMagnetized iron oxide nanoparticles (NPs) were prepared using Eucalyptus leaf extract and then coated with CTAB (Cetrimonium bromide) to increase efficiency. The prepared and modified (NPs) were characterized using AFM, FTIR, and X-ray techniques. The adsorption of the dye reactive blue RB 238 on coated (NPs) was investigated. The effect of various experimental factors, such as the initial concentration of the dye, the amount of adsorbent, pH and temperature on the removal of RB238 was studied. The best conditions for dye removal were found to be 298 K in an acidic medium of pH = 3 and an appropriate dose of the adsorbent of 0.15 g per 25 mg/L to achieve the best color removal of 90% within 60 minutes. The pseudo-second-order re
... Show MoreIn batch experiments, a natural chitosan adsorbent was employed to extract cobalt ions from industrial wastewater under varied parameters of starting concentration, adsorbent weight, pH, and contact duration. The adsorbent was examined using FTIR, XRD, and AFM. For an initial cobalt ion concentration of 5x10-2 mol/l at pH 6, time 35 minutes, temperature 25 °C, and adsorbing dose 0.1 g, the results showed a maximum removal percentage of 99.0 percent. The Freundlich isotherm and the pseudo-second order kinetic model both suit the experimental data well. According to thermodynamic studies, the process was spontaneous and endothermic.