Preferred Language
Articles
/
joe-2256
Effect of Design Parameters and Support Conditions on Natural Frequency of Pipe Excited by a Turbulent Internal Flow
...Show More Authors

In this study, the effect of design parameters such as pipe diameter, pipe wall thickness, pipe material and the effect of fluid velocity on the natural frequency of fluid-structure interaction in straight pipe conveying fully developed turbulent flow were investigate numerically,analytically and experimentally. Also the effect of support conditions, simply-simply and clamped-clamped was investigated. Experimentally, pipe vibrations were characterized by accelerometer mounted on the pipe wall. The natural frequencies of vibration were analyzed by using Fast Fourier Transformer (FFT). Five test sections of two different pipe diameters of 76.2
mm and 50.8 mm with two pipe thicknesses of 3.7 mm and 2.4 mm and two pipe materials,stainless steel and polyvinyl chloride PVC in the range of Reynolds numbers from 4*104 to 5*105 were studied. Mathematically, the governing continuity and momentum equations were solved numerically by using the finite volume method to compute the characteristics of two dimensional turbulent flow. The dynamics of a pipe conveying fluid was described by the Transfer Matrix Method (TMM) which is provides a numerical technique for solving the equations of pipe vibrations for simply-simply and clamped supports. The results showed that,the natural frequencies increase with pipe diameter increase and the natural frequencies slightly increases with pipe wall thickness increase. Also, the natural frequencies in clamped-clamped supported pipe are higher than those in simply-simply supported pipe.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Southwest Jiaotong University
Inclined Magnetic Field of Non-uniform and Porous Medium Channel on Couple Stress Peristaltic Flow and application in medical treatment (Knee Arthritis)
...Show More Authors

The present study analyzes the effect of couple stress fluid (CSF) with the activity of connected inclined magnetic field (IMF) of a non-uniform channel (NUC) through a porous medium (PM), taking into account the sliding speed effect on channel walls and the effect of nonlinear particle size, applying long wavelength and low Reynolds count estimates. The mathematical expressions of axial velocity, stream function, mechanical effect and increase in pressure have been analytically determined. The effect of the physical parameter is included in the present model in the computational results. The results of this algorithm have been presented in chart form by applying the mathematical program.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
Calculation of Radial Electron-Electron Distribution function and Expectation Values for Li-Atom in Excited States 1s 2p, 1s 3p and 1s 3d
...Show More Authors

The electron correlation for inter-shells (1s 2p), (1s 3p) and (1s 3d) was described by the inter-particle radial distribution function f(r12). It was evaluated for Li-atom in the different excited states (1s2 2p), (1s2 3p) and (1s2 3d) using Hartree-Fock approximation (HF). The inter particle expectation values for these shells were also evaluated. The calculations were performed using Mathcad 14 program.

View Publication Preview PDF
Crossref
Publication Date
Thu Jun 30 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
CFD Simulation of Air Flow Patterns in a Spray Dryer Fitted With a Rotary Disk
...Show More Authors

The air flow pattern in a co-current pilot plant spray dryer fitted with a rotary disk atomizer was determined experimentally and modelled numerically using Computational Fluid Dynamics (CFD) (ANSYS Fluent ) software. The CFD simulation used a three dimensions system, Reynolds-Average Navier-Stokes equations (RANS), closed via the RNG k −ε turbulence model. Measurements were carried out at a rotation of the atomizer (3000 rpm) and when there is no rotation using a drying air at 25 oC and  air velocity at the inlet of  5 m/s without swirl. The air flow pattern was predicted experimentally using cotton tufts and digital anemometer. The CFD simulation predicted a downward central flowing air core surrounded by a slow

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
The Effect of Vehicle Body Shapes on the Near Wake Region and Drag Coefficient: A Numerical Study
...Show More Authors

The purpose of this paper is to gain a good understanding about wake region behind the car body due to the aerodynamic effect when the air flows over the road vehicle during its movement. The main goal of this study is to discuss the effect of the geometry on the wake region and the aerodynamic drag coefficient. Results will be achieved by using two different shapes, which are the fastback and the notchback. The study will be implemented by the Computational Fluid Dynamic (CFD) by using STAR-CCM+® software for the simulation. This study investigates the steady turbulent flow using k-epsilon turbulence model. The results obtained from the simulation show that the region of the air separation behind the vehicle

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 02 2024
Journal Name
Advances In The Theory Of Nonlinear Analysis And Its Application
Properties of Capturing of Peristaltic Flow to A Chemically Reacting Couple Stress Fluid Through an Inclined Asymmetric Channel with Variable Viscosity and Various Boundaries
...Show More Authors

The properties of capturing of peristaltic flow to a chemically reacting couple stress fluid through an inclined asymmetric channel with variable viscosity and various boundaries are investigated. we have addressed the impacts of variable viscosity, different wave forms, porous medium, heat and mass transfer for peristaltic transport of hydro magnetic couple stress liquid in inclined asymmetric channel with different boundaries. Moreover, The Fluid viscosity assumed to vary as an exponential function of temperature. Effects of almost flow parameters are studied analytically and computed. An rising in the temperature and concentration profiles return to heat and mass transfer Biot numbers. Noteworthy, the Soret and Dufour number effect resul

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jun 05 2016
Journal Name
Baghdad Science Journal
Adsorption and Thermodynamic Study of Direct Blue 71 Dye on to natural Flint Clay from Aqueous Solution
...Show More Authors

The remove of direct blue (DB71) anionic dye on flint clay in aqueous solution was investigated by using a batch system for various dye concentrations. The contact time, pH, adsorbent dose, and temperature was studied under batch adsorption technique. The data of adsorption equilibrium fit with isotherm Langmuar and Freiundlich ,when the correlation coefficient used to elucidate the best fitting isotherm model. The thermodynamic parameters such as, ?Hº ,?Sº and ?Gº. Thermodynamic analysis indicated that the sorption of the dyes onto Flint clay was endothermic and spontaneous.

View Publication Preview PDF
Crossref
Publication Date
Wed Aug 31 2022
Journal Name
Iraqi Journal Of Science
Solving Nonlinear Boundary Value Problem Arising of Natural Convection Porous Fin By Using the Haar Wavelet Collocation Method and Temimi and Ansari Method
...Show More Authors

      In this article, the boundary value problem of convection propagation through the permeable fin in a natural convection environment is solved by the Haar wavelet collocation method (HWCM). We also compare the solutions with the application of a semi-analytical method , namely the Temimi and Ansari (TAM), that is characterized by accuracy and efficiency.The proposed method is also characterized by simplicity and efficiency. The possibility of applying the proposed method to many types of  linear or nonlinear ordinary and partial differential equations.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Effect of Fusaric Acid (FA) Bio-stress on Certain Morphological Parameters for Potato (Solanum tuberosum. L) Cultivars in Vitro
...Show More Authors

      The experiment was carried out with the aim of studying the effect of biological stress on some morphological parameters of ten varieties of potatoes grown in vitro. Biological stress was applied by adding different concentrations of fusaric acid (0, 0.0125, 0.025, 0.05, 0.1, 0.2 mM), to the growth medium MS, and some growth parameters were measured, such as plant height (cm), number of leaves (leaf/plant¹), leaf area (mm²), number of roots (root.plant¹) and length it (cm), wet and dry weight of the plant (g). The results showed that the studied varieties were different in the response to biological stress according to the studied parameters. The addition of fusaric acid led to reduce all growth parameters compared with the

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Numerical Simulation of Magnetohydrodynamic Influences on Casson Model for Blood Flow through an Overlapping Stenosed Artery
...Show More Authors

Magnetohydrodynamic (MHD) effects of unsteady blood flow on Casson fluid through an artery with overlapping stenosis were investigated. The nonlinear governing equations accompanied by the appropriate boundary conditions were discretized and solved based on a finite difference technique, using the pressure correction method with MAC algorithm. Moreover, blood flow characteristics, such as the velocity profile, pressure drop, wall shear stress, and patterns of streamlines, are presented graphically and inspected thoroughly for understanding the blood flow phenomena in the stenosed artery.

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Feb 22 2022
Journal Name
Water
Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics
...Show More Authors

A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu

... Show More
Scopus (8)
Crossref (6)
Scopus Clarivate Crossref