In this study, the effect of design parameters such as pipe diameter, pipe wall thickness, pipe material and the effect of fluid velocity on the natural frequency of fluid-structure interaction in straight pipe conveying fully developed turbulent flow were investigate numerically,analytically and experimentally. Also the effect of support conditions, simply-simply and clamped-clamped was investigated. Experimentally, pipe vibrations were characterized by accelerometer mounted on the pipe wall. The natural frequencies of vibration were analyzed by using Fast Fourier Transformer (FFT). Five test sections of two different pipe diameters of 76.2
mm and 50.8 mm with two pipe thicknesses of 3.7 mm and 2.4 mm and two pipe materials,stainless steel and polyvinyl chloride PVC in the range of Reynolds numbers from 4*104 to 5*105 were studied. Mathematically, the governing continuity and momentum equations were solved numerically by using the finite volume method to compute the characteristics of two dimensional turbulent flow. The dynamics of a pipe conveying fluid was described by the Transfer Matrix Method (TMM) which is provides a numerical technique for solving the equations of pipe vibrations for simply-simply and clamped supports. The results showed that,the natural frequencies increase with pipe diameter increase and the natural frequencies slightly increases with pipe wall thickness increase. Also, the natural frequencies in clamped-clamped supported pipe are higher than those in simply-simply supported pipe.
Abstract
In this paper presents two dimensional turbulent flow of different nanofluids and ribs configuration in a circular tube have been numerically investigation using FLUENT 6.3.26. Two samples of CuO and, ZnO nanoparticles with 2% v/v concentration and 40 nm as nanoparticle diameter combined with trapezoidalribs with aspect ratio of p/d=5.72 in a constant tube surface heat flux were conducted for simulation. The results showed that heat flow as Nusselt number for all cases raises with Reynolds number and volume fraction of nanofluid, likewise the results also reveal that ZnO with volume fractions of 2% in trapezoidal ribs offered highest Nusselt number at Reynolds number of Re= 30000.
Key
... Show MoreIn this work, an experimental analysis is made to predict the thermal performance of the natural-convection phenomenon from a heated vertical externally finned-tube to surrounding air through an open-ended enclosure. Two different configurations of longitudinal rectangular fin namely, continuous and interrupted are utilized with constant thickness, different numbers, and different heights are extended radially on the outer surface of a heated tube. The tube is heated electrically from inner surface with five varied power input magnitudes. The effect of fins configuration, fins number, fins height, and heat flux of the inner tube surface on the thermal performance of natural c
... Show MoreThe purpose of this research is to show a constructive method
for using known fuzzy groups as building blocks to form more fuzzy
subgroups. As we shall describe employing this procedure with the
fuzzy generating subgroups give us a large class of fuzzy
subgroup of abelian groups which include all fuzzy subgroup of
abelian groups of finite order.
In this work, an experimental investigation has been done for heat transfer by natural-convection through a horizontal concentric annulus with porous media effects. The porous structure in gap spacing consists of a glass balls and replaced by plastic (PVC) balls with different sizes. The outer surface of outer tube is isothermally cooled while the outer surface of inner tube is heated with constant heat flux condition. The inner tube is heated with different supplied electrical power levels. Four different radius ratios of annulus are used. The effects of porous media material, particles size and annulus radius ratio on heat dissipation in terms of average Nusselt number have been analyzed. |
This paper shews how to estimate the parameter of generalized exponential Rayleigh (GER) distribution by three estimation methods. The first one is maximum likelihood estimator method the second one is moment employing estimation method (MEM), the third one is rank set sampling estimator method (RSSEM)The simulation technique is used for all these estimation methods to find the parameters for generalized exponential Rayleigh distribution. Finally using the mean squares error criterion to compare between these estimation methods to find which of these methods are best to the others
The coefficient of charge transfer at heterogeneous devices of Au metal with a well-known dyeis investigations using quantum model.Four different solvent are used to estimation the effective transition energy. The potential barrier at interface of Au and dye has been determined using effective transition energy and difference between the Fermi energy of Au metal and ionization energy of dye. A possible transfer mechanism cross the potential barrier dyeand coupling strength interaction between the electronic levels in systems of Au and is discussed.Differentdata of effective transition energy and potential barrier calculations suggest that solvent is more suitable to binds Au with dye.
Abstract: The study aimed to investigate the effect of oral administration of hot aqueous extract of beetle cocoon Larinus maculatus Faldermann, in a two doses 50 and100mg/Kg/B.wt for 3 and 6 weeks respectively on the levels of serum glucose, weight of body, and lipid profile in male mice Mus musculus. The results revealed that there was a significant (p<0.05) decrease in serum glucose level was dose and period dependent. Weight of body also reduced significantly (p<0.05) with doses and period dependent. The lipid profile level significantly (p<0.05) decreased in dose and period’s manner in each of Total cholesterol (TC), Triglyceride (TG), High Density Lipoprotein- (HDL), Low Density Lipoprotein (LDL), and Very Low Density Lipoprotei
... Show MoreThe remove of direct blue (DB71) anionic dye on flint clay in aqueous solution was investigated by using a batch system for various dye concentrations. The contact time, pH, adsorbent dose, and temperature was studied under batch adsorption technique. The data of adsorption equilibrium fit with isotherm Langmuar and Freiundlich ,when the correlation coefficient used to elucidate the best fitting isotherm model. The thermodynamic parameters such as, ?Hº ,?Sº and ?Gº. Thermodynamic analysis indicated that the sorption of the dyes onto Flint clay was endothermic and spontaneous.