Preferred Language
Articles
/
joe-2253
Improvement of Soil by Using Polymer Fiber Materials Underneath Square Footing
...Show More Authors

The change in project cost, or cost growth, occurs from many factors, some of which are related to soil problem conditions that may occurs during construction and/or during site investigation period. This paper described a new soil improvement method with a minimum cost solution by using polymer fiber materials having a length of (3 cm) in both directions and (2.5 mm) in thickness, distributed in uniform medium dense .
sandy soil at different depths (B, 1.5B and 2B) below the footings. Three square footings has been used (5,7.5 and 10 cm) to carry the above investigation by using lever arm loading system design for such purposes.
These fibers were distributed from depth of (0.1B) below the footing base down to the investigated depth. It was found that the initial vertical settlement of footing was highly affected in the early stage of loading due to complex Soil-Fiber Mixture (SFM) below the footing. The failure load value for proposed model in any case of loading increased compared with the un-reinforced soil by increasing the depth of improving below the footing. The Bearing Capacity Ratio (BCR) for soil-fiber mixture has been increased by ratio of (1.4 to
2.5), (1.7 to 4.9), and (1.8 to 8) for footings (5, 7.5, and 10 cm) respectively. The yield load-settlement for soil-fiber mixture system started at settlement of about 1.1% B while the yield load in un-reinforced soil started at smaller percentage which reflects the benefits of using such fiber materialfor improving soil behavior. Comparison between experimental and predicted (calculated) settlement below the footings showed the difference in ranges were within accepted limits for foundation settlements design

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Aug 01 2020
Journal Name
Key Engineering Materials
Quality Control of Production Lightweight Ferrocement Plate Using Sustainable Materials
...Show More Authors

This research is concerned with a new type of ferrocement characterized by its lower density and enhanced thermal insulation. Lightweight ferrocement plates have many advantages, low weight, low cost, thermal insulation, environmental conservation. This work contain two group experimental : first different of layer ferrocement, second different of ratio aggregate to cement. The experiments were made to determined the optimum proportion of cement and lightweight aggregate (recycle thermestone ). A low W/C ratio of 0.4 was used with super plasticizer conforming to ASTM 494 Type G. The compressive strength of the mortar mixes is 20-25 MPa. The work also involved the determination of thermal properties .Thermal conductivity value of thi

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Mon Sep 16 2024
Journal Name
Journal Of Optics
Improvement Of The Efficiency Of Optical Sensors Of Polypyrrole Using Graphene Oxide
...Show More Authors

This research explores the preparation of polypyrrole (PPy) using chemical oxidation and its enhancement with graphene oxide (GO) for optical sensor applications. PPy was synthesized by polymerizing pyrrole monomers with ferric chloride (Fe2Cl3) as the oxidant. The resulting PPy was then combined with GO to form a composite material, aiming to improve its electrical and optical properties. Polypyrrole nanofibers were obtained and after adding graphene oxide, the sensitivity increased. Characterization techniques including UV-Vis spectroscopy, DC conductivity measurements, Field Emission Scanning Electron Microscopy (FESEM) and response of photocurrent analysis were employed. The incorporation of GO into PPy resulted in a significant reducti

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Fri Sep 16 2016
Journal Name
Journal Of Earthquake Engineering
Dynamic Response of Saturated Soil - Foundation System Acted upon by Vibration
...Show More Authors

In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured to simulate steady state harmonic load at different operating frequencies. Total of 84 physical models were performed. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were tested at the surface and at 50 mm depth below model surface. Meanwhile the investigated parameters of the soil condition include dry and saturated sand for two relative densities 30% and 80%. The response of the footing was ela

... Show More
View Publication
Crossref (33)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
International Journal Of Advanced Computer Science And Applications
Face Detection and Recognition Using Viola-Jones with PCA-LDA and Square Euclidean Distance
...Show More Authors

View Publication
Crossref (27)
Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Physics: Conference Series
Analysis the Results of Laboratory Tests of Gypsum Soil Samples at Salah-Aldeen City by Using the GIS Program
...Show More Authors
Abstract<p>This paper has dealing with experimentally works which includes properties of materials and testing program. The testing program includes rotine characterization tests, chemical, and physical tests for samples of gypseous soil. Samples of disturbed and undisturbed soil was obtained of seven different locations of Salah-Aldeen province. The unified classification system was adopted of study region. Except sample 7, soil categorization (as poorly graded sand) was a good graded sand soil. Samples had non plasticity rate (NP). The results of laboratory tests (by using Arc-Map GIS program) were enhanced by spatial interpolation mapping utilizing Inverse Distance Weighted Scheme.</p>
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Dec 01 2010
Journal Name
Iraqi Journal Of Physics
Amplified Spontaneous Emission of DCM Dye in PMMA Polymer Using Copper Metal Disks Mold
...Show More Authors

The effect of irradiation and exposure time of laser light on the fluorescence emission of DCM dye in PMMA polymer contained in the composition mold using different metals have been investigated. It was found that the fluorescence intensity decreases as the exposure time increases and then reaches stabilization at long times. The effect of the incident laser power on fluorescence intensity of DCM dye in PMMA polymer at 10-3 M and 20% mixing ratio, using copper disks of composition molds, has been studied too. It was observed that there is an upward knick in the curve at laser intensity of 19.2 W/cm2, which may be associated with the threshold for amplified spontaneous emission (ASE) or laser action. And at intensity higher than about 88.

... Show More
View Publication Preview PDF
Publication Date
Fri Feb 28 2020
Journal Name
Iraqi Journal Of Agricultural Sciences (ijas)
PHYTOTOXICITY TEST OF KEROSENE-CONTAMINATED SOIL USING BARLEY
...Show More Authors

This study was aimed to determine a phytotoxicity experiment with kerosene as a model of a total petroleum hydrocarbon (TPHs) as Kerosene pollutant at different concentrations (1% and 6%) with aeration rate (0 and 1 L/min) and retention time (7, 14, 21, 28 and 42 days), was carried out in a subsurface flow system (SSF) on the Barley wetland. It was noted that greatest elimination 95.7% recorded at 1% kerosene levels and aeration rate 1L / min after a period of 42 days of exposure; whereas it was 47% in the control test without plants. Furthermore, the percent of elimination efficiencies of hydrocarbons from the soil was ranged between 34.155%-95.7% for all TPHs (Kerosene) concentrations at aeration rate (0 and 1 L/min). The Barley c

... Show More
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Using the plastic wastes in fabrication of composite materials for different applications
...Show More Authors

This study suggests using the recycled plastic waste to prepare the polymer matrix composite (PMCs) to use in different applications. Composite materials were prepared by mixing the polyester resin (UP) with plastic waste, two types of plastic waste were used in this work included polyethylene-terephthalate (PET) and Polyvinyl chloride (PVC) with varies weight fractions (0, 5, 10, 15, 20 and 25 %) added as a filler in flakes form. Charpy impact test was performed on the prepared samples to calculate the values of impact strength (I.S). Flexural and hardness tests were carried out to calculate the values of flexural strength and hardness. Acoustic insulation and optical microscope tests were carried out. In general, it is found that UP/PV

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Dec 02 2018
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Improvement of Domestic Wastewater Treated Effluent from Sequencing Batch Reactor Using Slow Sand Filtration
...Show More Authors

The effluent quality improvement being discharged from wastewater treatment plants is essential to maintain an environment and healthy water resources. This study was carried out to evaluate the possibility of intermittent slow sand filtration as a promising tertiary treatment method for the sequencing batch reactor (SBR) effluent. Laboratory scale slow sand filter (SSF) of 1.5 UC and 0.1 m/h filtration rate, was used to study the process performance. It was found that SSF IS very efficient in oxidizing organic matter with COD removal efficiency up to 95%, also it is capable of removing considerable amounts of phosphate with 76% and turbidity with 87% removal efficiencies. Slow sand filter efficiently reduced the mass of suspended

... Show More
Publication Date
Sun Mar 17 2019
Journal Name
Baghdad Science Journal
Bioremediation of Petroleum Hydrocarbons Contaminated Soil using Bio piles System
...Show More Authors

This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. Four bacterial strains were isolated from diesel contaminated soil samples. The isolates were identified by the Vitek 2 system, as Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae. The potential of biological surfactant production was tested using the Sigma 703D stand-alone tensiometer showed that these isolates are biological surfactant producers. The bet

... Show More
View Publication
Scopus (10)
Crossref (3)
Scopus Clarivate Crossref