Aromatic hydrocarbons present in Iraqi national surface water were believed to be raised principally from combustion of various petroleum products, industrial processes and transport output and their precipitation on surface water.
Polycyclic aromatic hydrocarbons (PAHs) were included in the priority pollutant list due to their toxic and carcinogenic nature. The concern about water contamination and the consequent human exposure have encouraged the development of new methods for
PAHs detection and removal.
PAHs, the real contaminants of petroleum matter, were detected in selected sites along Tigris River within Baghdad City in summer and winter time, using Shimadzu high performance liquid chromatography (HPLC) system.
Analysis of samples from selected sites proved that the most abundant component of aromatic hydrocarbons were phenanthrene naphthalene, and acenaphthylene, followed by fluorene, acenaphthene, fluoranthene, benzo (a) pyrene, anthracene. and pyrene were
present in low concentrations ranging in a descending order. Chrysene and benzo (a) anthracene were found in very low concentration.
A laboratory unit was designed to optimize the factors which may influence the feasibility of degradation processes of naphthalene and phenanthrene in aqueous matrices by oxidation with Fenton reagent. The study proved that 83% and 79% removal of naphthalene and phenanthrene were achieved applying optimum conditions of pH=3, temperature=40 ° C, H2O2=50 ppm and Fe2+ catalyst = 6 ppm
Virtual reality, VR, offers many benefits to technical education, including the delivery of information through multiple active channels, the addressing of different learning styles, and experiential-based learning. This paper presents work performed by the authors to apply VR to engineering education, in three broad project areas: virtual robotic learning, virtual mechatronics laboratory, and a virtual manufacturing platform. The first area provides guided exploration of domains otherwise inaccessible, such as the robotic cell components, robotic kinematics and work envelope. The second promotes mechatronics learning and guidance for new mechatronics engineers when dealing with robots in a safe and interactive manner. And the thir
... Show MoreThe primary goal of in-situ load testing is to evaluate the safety and performance of a structural system under particular loading conditions. Advancements in building techniques, analytical tools, and monitoring instruments are prompting the evaluation of the appropriate loading value, loading process, and examination criteria. The procedure for testing reinforced concrete (RC) structures on-site, as outlined in the ACI Building Code, involves conducting a 24-h load test and applying specific evaluation criteria. This article detailed a retrofitting project for an RC slab-beams system by utilizing carbon fiber-reinforced polymer (CFRP) sheets to strengthen the structure following a fire incident. The RC structure showed indicators of deter
... Show MoreThis paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
Pollutants generation is strongly dependant on the firing temperature and reaction rates of the gaseous reactants in the gas turbine combustion chamber. An experimental study is conducted on a two-shaft T200D micro-gas turbine engine in order to evaluate the impact of injecting ethanol directly into the compressor inlet air on the exhaust emissions. The study is carried out in constant speed and constant load engine tests. Generally, the results showed that when ethanol was added in a concentration of 20% by volume of fuel flow; NOx emission was reduced by the half, while CO and UHC emissions were almost doubled with respect to their levels when burning conventional LPG fuel alone.
In this paper deals with the effect laser irradiation on the optical properties of cobalt oxide (CoO2) thin films and that was prepared using semi computerized spray pyrolysis technique. The films deposited on glass substrate using such as an ideal value concentration of (0.02)M with a total volume of 100 ml. With substrate temperature was (350 C), spray rate (15 ml/min).The XRD diffraction given polycrystalline nature with Crystal system trigonal (hexagonal axes). The obtained films were irradiated by continuous green laser (532.8 nm) with power 140 mW for different time periods is 10 min,20min and 30min. The result was that the optical properties of cobalt oxide thin films affe
The research examines the mechanism of application of )ISO 21001: 2018( in the Energy Branch- Electromechanical Engineering at the University of Technology to achieve the quality of the educational service to prepare the branch to obtain the certificate of conformity with the requirements of) ISO 21001: 2018(, the necessary data were collected Depending on the (CHEKLIST) of (ISO 21001: 2018), field interviews and records of the concerned department, The researchers reached a number of results, the most prominent of which was the adoption of high quality leadership leaders and their willingness to implement the standard requirements, The university has a basic structure that qualifies it to implement the international standard, as
... Show MoreModeling data acquisition systems (DASs) can support the vehicle industry in the development and design of sophisticated driver assistance systems. Modeling DASs on the basis of multiple criteria is considered as a multicriteria decision-making (MCDM) problem. Although literature reviews have provided models for DASs, the issue of imprecise, unclear, and ambiguous information remains unresolved. Compared with existing MCDM methods, the robustness of the fuzzy decision by opinion score method II (FDOSM II) and fuzzy weighted with zero inconsistency II (FWZIC II) is demonstrated for modeling the DASs. However, these methods are implemented in an intuitionistic fuzzy set environment that restricts the ability of experts to provide mem
... Show MorePromoting the production of industrially important aromatic chloroamines over transition-metal nitrides catalysts has emerged as a prominent theme in catalysis. This contribution provides an insight into the reduction mechanism of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) over the γ-Mo2N(111) surface by means of density functional theory calculations. The adsorption energies of various molecularly adsorbed modes of p-CNB were computed. Our findings display that, p-CNB prefers to be adsorbed over two distinct adsorption sites, namely, Mo-hollow face-centered cubic (fcc) and N-hollow hexagonal close-packed (hcp) sites with adsorption energies of −32.1 and −38.5 kcal/mol, respectively. We establish that the activation of nit
... Show MoreDate palm silver nanoparticles are a green synthesis method used as antibacterial agents. Today,
there is a considerable interest in it because it is safe, nontoxic, low costly and ecofriendly. Biofilm bacteria
existing in marketed local milk is at highly risk on population health and may be life-threatening as most
biofilm-forming bacteria are multidrug resistance. The goal of current study is to eradicate biofilm-forming
bacteria by alternative treatment green synthesis silver nanoparticles. The biofilm formation by bacterial
isolates was detected by Congo red method. The silver nanoparticles were prepared from date palm
(khestawy) fruit extract. The formed nanoparticles were characterized with UV-Vis
Cadmium Selenide (CdSe) thin films have been deposited on a glass substrate utilizing the plasma DC-sputtering method at room temperature at different deposition time in order to achieve different films thickness, and studied its sensitivity to the carbon monoxide CO gas which are show high response as the film thickness increases, the DC-conductivity and photoconductivity are also studied and which are increased too as the film thickness increases, that indicates the good semiconducting behavior at room temperature and light environments.