Aromatic hydrocarbons present in Iraqi national surface water were believed to be raised principally from combustion of various petroleum products, industrial processes and transport output and their precipitation on surface water.
Polycyclic aromatic hydrocarbons (PAHs) were included in the priority pollutant list due to their toxic and carcinogenic nature. The concern about water contamination and the consequent human exposure have encouraged the development of new methods for
PAHs detection and removal.
PAHs, the real contaminants of petroleum matter, were detected in selected sites along Tigris River within Baghdad City in summer and winter time, using Shimadzu high performance liquid chromatography (HPLC) system.
Analysis of samples from selected sites proved that the most abundant component of aromatic hydrocarbons were phenanthrene naphthalene, and acenaphthylene, followed by fluorene, acenaphthene, fluoranthene, benzo (a) pyrene, anthracene. and pyrene were
present in low concentrations ranging in a descending order. Chrysene and benzo (a) anthracene were found in very low concentration.
A laboratory unit was designed to optimize the factors which may influence the feasibility of degradation processes of naphthalene and phenanthrene in aqueous matrices by oxidation with Fenton reagent. The study proved that 83% and 79% removal of naphthalene and phenanthrene were achieved applying optimum conditions of pH=3, temperature=40 ° C, H2O2=50 ppm and Fe2+ catalyst = 6 ppm
ABSTRACT
This research included the preparation and characterization of new demulsifies from natural and synthetic polymers of chitosan and polyvinyl alcohol that are environmentally friendly and at the same time have high efficacy comparable to emulsifiers. imported foreign. The prepared compounds were examined using infrared spectroscopy and nuclear magnetic resonance spectroscopy, and all the spectral signals of the polymers were in good agreement with the chemical composition of the polymers. And the melting and decomposition that occur on polymers at high temperatures. The effect of the length and type of side chain in the compositions of polymers on the process of water separation of oil emulsions w
... Show MoreThis research is based on the idea of showing the extent to which the public relies on satellite channels as sources for news of the demonstrations in Iraq .This was the essence of the problem for which the researcher set several goals, including knowing the public’s confidence in the news of these satellite channels and comparing them with others. The researcher chose an available intended sample of (117) respondents in Baghdad - Karkh and Rusafa by adopting the survey method and applying a questionnaire form and the theory of media dependence for the period from 15/11/2019 to 1/1/2021 . By using statistical methods, the researcher reached many results, the most important of which are: Satellite channels are a source for 79% of the pu
... Show MorePhytoplankton community is a model for of monitoring aquatic systems and interpreting the environmental change in aquatic systems. The present study aimed to forecast environmental parameters that drive the change of phytoplankton community structure in the lake. The present study was carried out in Baghdad Tourist Island Lake (BTIL) for the period From October 2021 to May 2022. The study included the quality and quantity of phytoplankton, moreover, the highest and lowest value of the physical and chemical parameters were (Water temperature (13-30 °C), Light penetration (94-275cm), electric conductivity (837-1128 µS/cm), salinity (0.5-0.7 ‰), pH (7-8.2), total alkalinity (126-226 mg CaCO3/L), total Hardness (297-395 mg CaCO3/L
... Show MoreA geographic information system (GIS) is a very effective management and analysis tool. Geographic locations rely on data. The use of artificial neural networks (ANNs) for the interpretation of natural resource data has been shown to be beneficial. Back-propagation neural networks are one of the most widespread and prevalent designs. The combination of geographic information systems with artificial neural networks provides a method for decreasing the cost of landscape change studies by shortening the time required to evaluate data. Numerous designs and kinds of ANNs have been created; the majority of them are PC-based service domains. Using the ArcGIS Network Analyst add-on, you can locate service regions around any network
... Show MoreIn 2010, the tomato leaf miner Tuta absoluta (Meyrick, 1917) was reported for the first time in Iraq. The larvae can feed on all parts of tomato plants and can damage all the growth stages. The main host plant is tomato, Lycopersicon esculentum, but it can also attack other plants in Solanaceae family. In this study it was found attacking alfalfa plants, Medicago sativa in Baghdad Province. This finding reveals that alfalfa also serves as a host plant for T. absoluta in Iraq.
Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreEchocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreLymphoma is a cancer arising from B or T lymphocytes that are central immune system components. It is one of the three most common cancers encountered in the canine; lymphoma affects middle-aged to older dogs and usually stems from lymphatic tissues, such as lymph nodes, lymphoid tissue, or spleen. Despite the advance in the management of canine lymphoma, a better understanding of the subtype and tumor aggressiveness is still crucial for improved clinical diagnosis to differentiate malignancy from hyperplastic conditions and to improve decision-making around treating and what treatment type to use. This study aimed to evaluate a potential novel biomarker related to iron metabolism,
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b