Preferred Language
Articles
/
joe-2250
Retrofitting Reinforced Concrete One–Way Damaged Slabs Exposed to High Temperature
...Show More Authors

Exposure of reinforced concrete buildings to an accidental fire may result in cracking and loss in the bearing capacity of their major components, columns, beams, and slabs. It is a challenge for structural engineers to develop efficient retrofitting techniques that enable RC slabs to restore their structural integrity, after being exposed to intense fires for a long period of time. Experimental
investigation was carried out on twenty one slab specimens made of self compacting concrete, eighteen of them are retrofitted with CFRP sheets after burning and loading till failure while three of them (which represent control specimens) are retrofitted with CFRP sheet after loading till failure without burning. All slabs had been tested in a simply supported span and subjected to two-point loading. The main variables were the effect of different temperature levels (300ºC, 500ºC and 700ºC),different concrete compressive strength (20MPa, 30MPa and 40MPa) and cooling rate (gradually and sudden cooling conditions) on the behavior of retrofitted one way slabs .The structural response of each slab specimen was investigated in terms of load-deflection behavior, ultimate load carrying
capacity and mode of failure. The experimental results, generally, indicate that slabs retrofitted using CFRP sheets restored flexural strength values nearly equal to or lower than those of the reference slabs, the retrofitted slabs exhibited larger deflection than the control slabs at ultimate loads. Retrofitted control slabs after loading regained about 93.95% to 97.92% of their original load capacity
(before retrofitting) while the other slabs regained from 42.% to 84% of the load capacity of the original control specimens. Most of the tested slabs failed by concrete crushing at mid span and partial debonding of certain retrofitting systems was also observed for a few cases

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
The effect of using polyolefin fiber on some properties of slurry-infiltrated fibrous concrete
...Show More Authors
Abstract<p>Slurry-infiltrated fibrous concrete (SIFCON) is a special type of concrete that has great strength, as well as high ductility. However, the unit weight is high, which exceeds the unit weight of fiber-reinforced concrete, because of the high fiber content. This research aims to verify the compressive and flexural strength, as well as the density of SIFCON when using two different fibers (steel and polyolefin). Sometimes mono type of fiber steel or polyolefin, sometimes by hybridizing two types of fiber steel + polyplefin. Volume fraction (6% for all species) was used. Hook-end steel fiber and polyolefin fiber are used. With hybridization, a total volume fraction of 6% was used, which </p> ... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Matec Web Of Conferences
Effect of internal curing on performance of self-compacting concrete by using sustainable materials
...Show More Authors

This paper is devoted to investigate the effect of internal curing technique on the properties of self-compacting concrete. In this study, self-compacting concrete is produced by using limestone powder as partial replacement by weight of cement with percentage of (5%), sand is partially replaced by volume with saturated fine lightweight aggregate which is thermostone aggregate as internal curing material in three percentages of (5%, 10%, 15%) for self-compacting concrete, and the use of two external curing conditions which are water and air. The experimental work was divided into three parts: in the first part, the workability tests of fresh self-compacting concrete were conducted. The second part included conducting compressive str

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Key Engineering Materials
Irradiation Duration Effect of Gamma Ray on the Compressive Strength of Reactive Powder Concrete
...Show More Authors

Reactive Powder Concrete (RPC) could be considered as the furthermost significant modern high compressive strength concrete. In this study, an experimental investigation on the impact of micro steel fiber volume fraction ratio and gamma ray irradiation duration influence upon the compressive strength of RPC is presented. Three volume fraction ratios (0.0, 1.0 and 1.5) % was implemented. For each percentage of the adopted fiber ratios, six different irradiation duration was considered; these are (1, 2, 3, 4, 5 and 6) days. Gamma source (Cs-137) of energy (0.662) MeV and activity (6) mci was used. In a case of zero volume fraction ratio, the experimental results showed that gamma ray had a significant influence on the reducing of the

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Wed Oct 01 2025
Journal Name
Journal Of Engineering
Influence of Nanomaterial Modifiers on Fatigue Resistance of Asphalt Concrete Mixtures: A Review Paper
...Show More Authors

Enhancing fatigue resistance in asphalt binders and mixtures is crucial for prolonging pavement lifespan and improving road performance. Recent advancements in nanotechnology have introduced various nanomaterials such as alumina (NA), carbon nanotubes (CNTs), and silica (NS) as potential asphalt modifiers. These materials possess unique properties that address challenges related to asphalt fatigue. However, their effectiveness depends on proper dispersion and mixing techniques. This review examines the mixing methods used for each nanomaterial to ensure uniform distribution within the asphalt matrix and maximize performance benefits. Recent research findings are synthesized to elucidate how these nanomaterials and their mixing proce

... Show More
View Publication
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Quality Evaluation of Al-Rasheed Ready Concrete Mixture Plant By Using Six Sigma Approach
...Show More Authors

The objective of this research work is to evaluate the quality of central concrete plant of Al-Rasheed Company by using Six Sigma approach which is a measure of quality that strives for near elimination of defects using the statistical methods to improve outputs that are critical to customers. The fundamental objective of Six Sigma methodology is the implementation of a measurement-based strategy that focuses on process improvement and variation reduction to reach delighting customers, and then suggesting an improvement system to improve the production of concrete in Al-Rasheed State Contracting Construction Company.
A field survey includes two parts (open and close questionnaire) that aimed to get the data and information required f

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Cogent Engineering
Influence of recycled concrete aggregate treatment methods on performance of sustainable warm mix asphalt
...Show More Authors

his study aimed to investigate the usability of Recycled Concrete Aggregate (RCA) in warm mix asphalt (WMA) as the implementation of sustainable construction technology. Five replacement rates (0%, 25%, 50%, 75%, and 100%) were tested for the coarse fraction of virgin aggregate (VA) with 3 types of RCA: untreated RCA, HL-treated RCA, and HCL-treated RCA. Scanning electron microscopy (SEM) analyses were performed to investigate the surface morphology for both treated and untreated RCA. The optimum asphalt cement content for every substitution rate was determined using Marshall mix design method. Thereafter, asphalt concrete specimens were prepared using the optimum asphalt cement content, followed by the evaluation of their performance prope

... Show More
View Publication
Crossref (18)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Influence of CFRP Strengthening on the Behavior of Concavely-Curved Soffit Concrete Bridge Girders
...Show More Authors
Abstract<p>Over the last few decades, fiber reinforced polymer (FRP) has been increasingly used in strengthening different structural concrete members. The main objective of this research is to study the influence of curvature on the performance of curved soffit reinforced concrete (RC) bridge girders that have been strengthened with carbon fiber reinforced polymers (CFRP). This experimental program was designed to evaluate the effect of concavity and soffit curvature on the CFRP laminate utilization and load capacity, compared to flat soffit RC beams strengthened with the same CFRP system. Accordingly, five beams, 2.7 m in length and having the same degree of soffit curvature (20 mm per 1 meter</p> ... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Influence of CFRP Strengthening on the Behavior of Concavely-Curved Soffit Concrete Bridge Girders
...Show More Authors
Abstract<p>Over the last few decades, fiber reinforced polymer (FRP) has been increasingly used in strengthening different structural concrete members. The main objective of this research is to study the influence of curvature on the performance of curved soffit reinforced concrete (RC) bridge girders that have been strengthened with carbon fiber reinforced polymers (CFRP). This experimental program was designed to evaluate the effect of concavity and soffit curvature on the CFRP laminate utilization and load capacity, compared to flat soffit RC beams strengthened with the same CFRP system. Accordingly, five beams, 2.7 m in length and having the same degree of soffit curvature (20 mm per 1 meter</p> ... Show More
Crossref (1)
Crossref
Publication Date
Tue Mar 01 2016
Journal Name
Journal Of Engineering
Some Mechanical Properties of Concrete by using Manufactured Blended Cement with Grinded Local Rocks
...Show More Authors

The use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress

... Show More
Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Finite Element Investigation on Shear Lag in Composite Concrete-Steel Beams with Web Openings
...Show More Authors

In this paper, effective slab width for the composite beams is investigated with special emphasis on the effect of web openings. A three dimensional finite element analysis, by using finite element code ANSYS, is employed to investigate shear lag phenomenon and the resulting effective slab width adopted in the classical T-beam approach. According to case studies and comparison with limitations and rules stipulated by different standards and codes of practice it is found that web openings presence and panel proportion are the most critical factors affecting effective slab width, whereas concrete slab thickness and steel beam depth are less significant. The presence of web opening reduces effective slab width by about 21%.

... Show More
View Publication Preview PDF