This paper shows the characteristics of temperature and adsorbed (water vapor) mass rate distribution in the adsorber unit which is the key part to any adsorption refrigeration system. The temperature profiles of adsorption/desorption phases (Dynamic Sorption) are measured experimentally under the operating conditions of 90oC hot water temperature, 30oC cooling water temperature, 35oC adsorption temperature and cycle time of 40 min. Based on the temperature profiles, The mass transfer equations for the annulus adsorbent bed are solved to obtain the distribution of adsorption velocity and adsorbate concentration using non-equilibrium
model. The relation between the adsorption velocity with time is investigated during the process of adsorption. The practical cycles of adsorption and desorption were stated dependent on the variables obtained from the experiment and equations calculations.
The results show that the adsorption velocity is diminished after a period of 20 min. The maximum value of the adsorbed water vapor concentration on silica gel is 0.12 kg water/kg adsorbent (adsorption phase) and the minimum value of the water content into silica gel is 0.04 kg water/kg adsorbent (desorption phase) producing a dynamic sorption of kg water/kg adsorbent.
Water injection equipments such as pipelines, which are used in the second recovery of oil in the Al-Ahdeb wells, suffer from the corrosion in water during maintaining vacuum deoxygenated tower that used to decrease concentration of the dissolved oxygen gas in the water from 6.2-9.1 ppm to o.5 ppm. This study involved calculation the corrosion rates of the internal surfaces of the
pipelines either during operation of the vacuum unit or when the tower out of operation. Finally, find the solution by one of the following suggestions. In the first suggestion removal of the dissolved O2 from water is achieved by increasing the dosage of the oxygen scavenger (sodium sulphite). The second suggestion involves removing the dissolved O2 from w
In this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show MoreCadmium oxide (CdO) thin films were deposited using the sequencing ion layer adsorption and reaction (SILAR) method. In this study, the effect of the pH value of an aqueous solution of cadmium acetate at a concentration of 0.2 mol of the cadmium oxide film was determined. The solution source for the cadmium oxide film was cadmium ions and an aqueous ammonia solution. The CdO films were deposited on glass substrates at a temperature of 90 ℃. The cadmium oxide film thickness was determined by the weight difference method at pH values (7.2, 8.2). X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that the size of the crystals increased with the increase in the solution (pH). While the UV-visible spectra of the fil
... Show MoreThis work provides an analysis of the thermal flow and behavior of the (load-free) refrigerator compartment. The main goal was to compare the thermal behavior inside the refrigerator cavity to the freezer door (home refrigerator) effect and install a fan on the freezer door while neglecting the heat transmitted by thermal radiation. Moreover, the velocity distribution, temperature, and velocity path lines are theoretically studied. This was observed without affecting the shelves inside the cabinet and the egg and butter places on the refrigerator door as they were removed and the aluminum door replaced with a glass door. This study aims to expand our knowledge about the temperature and flow fields of this refrigerator mo
... Show MoreGround water hydrochemical study in Yusufiyah depends upon (25) wells where major cations and anions were obtained as well as trace elements. The hydrochemical properties include the study of (pH, EC, TDS, and TH). The groundwater of the study area is odorless and colorless except the wells (13 and 16) with a salty taste due to the elevated (TDS) concentration in it, where the wells depth ranges between 7-20 meters. Depth of water in these wells was about 25-35 meters above sea level. Groundwater generally flows from east to west and from north east to south west. The resource of groundwater depends upon surface water. Physical specifications are measured in the water samples included temperature, color, taste, odor, pH, electrical condu
... Show MoreThe study highlights the rivalry of foreign interests in Iraq, especially after the establishment of the monarchy in 1921. This period was characterized by extensive American activity in Iraq in general and Baghdad in particular. This activity increased after the Americans obtained the concession which came in the light of Article IV of the 1930 Treaty. Which officially guaranteed US interests in Iraq. The research also discussed the efforts of the Jesuit Fathers in Baghdad to convert the Church of Wisdom from a place of worship and rites of the Christian religion to a school of the propagation of science and culture along the lines of American schools, College Baghdad), which has become an important school in Baghd
This research was aimed to study the pollen morphology for the genus Pterocephalus(Vaill) from Dipsacaceae family in Iraq, and to utilize these feathers in isolating the species as valuable taxonomic traits for enriching Iraqi flora. The study included characteristics of the type, shape, size, sculpturing and apertures, as well as determining the full dimensions using light microscopy as well as numerical analysis of this species and draw polygonal shapes and denderogram convergence between species. The results of the study of pollen and polygonal forms showed significant differences in the characteristics at the level of each species, which helps to identification the genus species, as it was found that the pollen was a tricolp
... Show MoreThe aim of this study is to determine the organic and inorganic components of bile and gallstones in Iraqi patients. Forty seven patients were included in this study with mean age (53+7) years and BMI (30.82+4.18) Kg/m2. Bile was classified according to its corresponding stones into: Bile of Mixed stones and Bile of pigment stones. IR spectra were studied for both types of stones and their bile in addition to biochemical analysis for organic and inorganic components. The organic components include: (cholesterol, bilirubin, bile salts, and phospholipids), while inorganic components include salts of: (calcium, phosphorus, iron, cupper and magnesium). The results reveal to there was significant low levels (p<0.005) of bile salts and phospholi
... Show MoreA theoretical investigation is carried out to study the effect of a pencil electron beam propagating inside the plasma region determining the hydrodynamic densities distribution with the aid of numerical analysis finite deference method (FDM).The plasma is generated and trapped by annular electron beams of fixed electron density 1x1014 m-3. The result of the study shows that the hydrodynamic density behaves as the increase in pencil electron beam. The hydrodynamic density ratio goes to more than double as the increase in pencil electron beam density to 1x1018 m-3.
In this study, the flow and heat transfer characteristics of Al2O3-water nanofluids for a range of the Reynolds number of 3000, 4500, 6000 and 7500 with a range of volume concentration of 1%, 2%, 3% and 4% are studied numerically. The test rig consists of cold liquid loop, hot liquid loop and the test section which is counter flow double pipe heat exchanger with 1m length. The inner tube is made of smooth copper with diameter of 15mm. The outer tube is made of smooth copper with diameter of 50mm. The hot liquid flows through the outer tube and the cold liquid (or nanofluid) flow through the inner tube. The boundary condition of this study is thermally insulated the outer wall with uniform velocity a
... Show More