Preferred Language
Articles
/
joe-2243
Structural Behavior of Reinforced Concrete Hollow Beams under Partial Uniformly Distributed Load
...Show More Authors

A Longitudinal opening is used to construct hollow core beam is a cast in site or precast or pre stressed concrete member with continuous voids provided to reduce weight, cost and, as a side benefit, to use for concealed electrical or mechanical runs. Primarily is used as floor beams or roof deck systems. This study investigate the behavior of six beams (solid or with opening) of dimension (length 1000 x height 180 x width120mm) simply support under partial uniformly distributed load, four of these beam contain long opening of varied section (40x40mm) or (80x40mm). The effect of vertical steel reinforcing, opening size and orientations are investigated to evaluate the response of beams. The experimental behavior based on load-deflection measured at central and quarter of tension zones. The experimental test result shows the presence of Hollow decrease the load carrying capacity by about (37.14% to 58.33%) and increased the deflections by about (71.6% for (Hollow ratio 7.4%) to 75.5% for (Hollow ratio 14.8%)) for same applied load
compared with solid beams with the same properties. The increase shear steel reinforcing will decrease all the deformations at all stages of loading, but particularly after initial cracking and give enhancement in ultimate load capacity of beams by about 31.5% with increasing the amount of shear steel reinforcing by about 50%. Finally, ductility is increased in all cases under partial uniformly distributed load when hollow ratio decreased by about 50% or increased in shear steel reinforcing by about 50%

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 29 2019
Journal Name
Iraqi Journal Of Physics
Effect of current intensity on structural properties of cupper iodine nanoparticles produced by exploding Cu wire
...Show More Authors

Exploding wire Technique is a way for production metal and its compound nanoparticle that is capable of production of bulk amount at low cost semiconductor. In this work a copper iodine nanoparticles were fabricate by exploding copper wires with different currents in iodine solution. The produced samples were examined by XRD, FTIR, SEM and TEM to characterize their properties. The XRD proved the Nano-size for producer. The crystalline size increases with increasing current. FTIR measurements show a peaks located at 638.92 for Cu-I stretch bond indicate on formation of copper iodide compound and the peaks intensities increase with increasing current. The SEM and TEM measurements show that the thin films have nanostructures.

View Publication Preview PDF
Crossref
Publication Date
Thu Oct 01 2009
Journal Name
Iraqi Journal Of Physics
Crystal Growth of Semiconductor CuAl0.4Ti0.6Se2 and studding the Structural Properties of its Alloy and Thin Film
...Show More Authors

Tetragonal compound CuAl0.4Ti0.6Se2 semiconductor has been prepared by
melting the elementary elements of high purity in evacuated quartz tube under low
pressure 10-2 mbar and temperature 1100 oC about 24 hr. Single crystal has been
growth from this compound using slowly cooled average between (1-2) C/hr , also
thin films have been prepared using thermal evaporation technique and vacuum 10-6
mbar at room temperature .The structural properties have been studied for the powder
of compound of CuAl0.4Ti0.6Se2u using X-ray diffraction (XRD) . The structure of the
compound showed chalcopyrite structure with unite cell of right tetragonal and
dimensions of a=11.1776 Ao ,c=5.5888 Ao .The structure of thin films showed

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Iraqi Journal Of Physics
Impact of Aluminum Oxide Content on the Structural and Optical Properties of ZnO: AlO Thin Films
...Show More Authors

AlO-doped ZnO nanocrystalline thin films from with nano crystallite size in the range (19-15 nm) were fabricated by pulsed laser deposition technique. The reduction of crystallite size by increasing of doping ratio shift the bandgap to IR region the optical band gap decreases in a consistent manner, from 3.21to 2.1 eV by increasing AlO doping ratio from 0 to 7wt% but then returns to grow up to 3.21 eV by a further increase the doping ratio. The bandgap increment obtained for 9% AlO dopant concentration can be clarified in terms of the Burstein–Moss effect whereas the aluminum donor atom increased the carrier's concentration which in turn shifts the Fermi level and widened the bandgap (blue-shift). The engineering of the bandgap by low

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Chemical Methodologies
Study of Optical and Structural Properties of CdTe Quantum Dots Capped with 3MPA Using Hydrothermal Method
...Show More Authors

Quantum dots (QDs) can be defined as nanoparticles (NPs) in which the movement of charge carriers is restricted in all directions. CdTe QDs are one of the most important semiconducting crystals among other various types where it has a direct energy gap of about 1.53 eV. The aim of this study is to exaine the optical and structural properties of the 3MPA capped CdTe QDs. The preparation method was based on the work of Ncapayi et al. for preparing 3MPA CdTe QDs, and hen, the same way was treated as by Ahmed et al. via hydrothermal method by using an autoclave at the same temperature but at a different reaction time. The direct optical energy gap of CdTe QDs is between 2.29 eV and 2.50 eV. The FTIR results confirmed the covalent bonding betwee

... Show More
View Publication Preview PDF
Scopus (6)
Scopus
Publication Date
Wed Nov 01 2017
Journal Name
International Journal Of Chemtech Research
Effect of capillary tube on structural and Optical Properties of SnO2 Thin Films Prepared by APCVD
...Show More Authors

Abstract : Tin oxide SnO2 films were prepared by atmospheric chemical vapor deposition (APCVD) technique. Our study focus on prepare SnO2 films by using capillary tube as deposition nozzle and the effect of these tubes on the structural properties and optical properties of the prepared samples. X-ray diffraction (XRD) was employed to find the crystallite size. (XRD) studies show that the structure of a thin films changes from polycrystalline to amorphous by increasing the number of capillary tubes used in sample preparation. Maximum transmission can be measured is (95%) at three capillary tube. (AFM) where use to analyze the morphology of the tin oxides surface. Roughness and average grain size for different number of capillary tubes have b

... Show More
Preview PDF
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Study of structural, optical and electrical properties of thin Ag2Cu2O4 films prepared by pulsed laser deposition
...Show More Authors

The influence of sintering and annealing temperatures on the structural, surface morphology, and optical properties of Ag2Cu2O4 thin films which deposited on glass substrates by pulsed laser deposition method have been studied. Ag2Cu2O4 powders have polycrystalline structure, and the Ag2Cu2O4 phase was appear as low intensity peak at 35.57o which correspond the reflection from (110) plane. Scan electron microscopy images of Ag2Cu2O4 powder has been showed agglomerate of oxide particles with platelets shape. The structure of thin films has been improved with annealing temperature. Atomic Force micrographs of Ag2Cu2O4 films showed uniform, homogenous films and the shape of grains was almost spherical and larger grain size of 97.85 nm has o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 01 2019
Journal Name
Ceramics International
A first-principles study of the electronic, structural, and optical properties of CrN and Mo:CrN clusters
...Show More Authors

View Publication
Scopus (12)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sun Sep 01 2013
Journal Name
Baghdad Science Journal
Synthesis, Structural Studies of Some New Transition Metals Complexes of Semicarbazide hydro chloride Schiff Base Derivatives
...Show More Authors

A new series of transition metal complexes of Cu(II), Ni(II), Co(II) and Fe(III) have been synthesized from the Schiff base (L1) and (L2) derived from Semicarbazide hydro chloride and 4-chlorobenzaldehyde or 4-bromobenzaldehyde. The structural features have been arrived from their elemental analyses, magnetic susceptibility, molar conductivity, IR, UV-Vis. and 1H NMR spectral studies. The data show that the complexes have composition of [M(L)2](NO3)2 and [Fe(L)2 (NO3)2](NO3) where the M=Co(II),Ni(II) and Cu(II) ;L=L1and L2 type. The magnetic susceptibility and UV-Vis spectral data of the complexes suggest a square planer geometry for Co(II) and Cu(II) but Fe(III) octahedral geometry and Ni(II) tetrahedral geometry around the central metal i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
World Scientific News
Effect of annealing temperature on the structural and optical properties of CdSe: 1% Ag thin films
...Show More Authors

Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Effect of Variation of Degree of Saturation with depth on Soil–Concrete Pile Interface in Clayey Soil
...Show More Authors

Bearing capacity of a concrete pile in fine grained cohesive soils is affected by the degree of saturation of the surrounding soil through the contribution of the matric suction. In addition, the embedded depth and the roughness of the concrete pile surface (expressed as British Pendulum Number BPN) also have their contribution to the shear strength of the concrete pile, consequently its bearing capacity. Herein, relationships among degree of saturation, pile depth, and surface roughness, were proposed as a mathematical model expressed as an equation where the shear strength of a pile can be predicted in terms of degree of saturation, depth, and BPN. Rel

... Show More
View Publication Preview PDF