This work predicts the effect of thermal load distribution in polymer melt inside a mold and a die during injection and extrusion processes respectively on the structure properties of final product. Transient thermal and structure models of solidification process for polycarbonate polymer melt in a steel mold and die are studied in this research. Thermal solution obtained according to solidify the melt from 300 to 30Cand Biot number of 16 and 112 respectively for the mold and from 300 to 30 Cand Biot number of 16 for die. Thermal conductivity, and shear and Young Modulus of polycarbonate are temperature depending. Bonded contact between the polycarbonate and the steel surfaces is suggested to transfer the thermal load. The temperatures distribution produces in thermal model importing as load and boundary conditions to solve the structure model. 3D mold and die are built to simulate the thermal and structure behavior using ANSYS 12.1 program. The results show that the temperatures and residual stresses decreases with the distance from the center to surfaces for the mold ,while for the die the temperatures and stresses decreases with the distance from the inlet to the outlet. The temperatures and stresses decreases with the time increasing for both mold and die. Also the thermal strain compatible with the temperatures distribution in the mold and the die. The total deformation concentrated at the left and right edge of polycarbonate in the mold, while starting in the center of the polymer at the outlet and then transfer to the entry of the die with the time increasing.
Experimental programs based test results has been used as a means to find out the response of individual elements of structure. In the present study involves investigated behavior of five reinforced concrete deep beams of dimension (length 1200 x height 300 x width150mm) under two points concentrated load with shear span to depth ratio of (1.52), four of these beams with hallow core and
retrofit with carbon fiber reinforced polymer CFRP (with single or double or sides Strips). Two shapes of hallow are investigated (circle and square section) to evaluated the response of beams in case experimental behavior. Test on simply supported beam was performed in the laboratory & loaddeflection, strain of concrete data and crack pattern of
A non-parametric kernel method with Bootstrap technology was used to estimate the confidence intervals of the system failure function of the log-normal distribution trace data. These are the times of failure of the machines of the spinning department of the weaving company in Wasit Governorate. Estimating the failure function in a parametric way represented by the method of the maximum likelihood estimator (MLE). The comparison between the parametric and non-parametric methods was done by using the average of Squares Error (MES) criterion. It has been noted the efficiency of the nonparametric methods based on Bootstrap compared to the parametric method. It was also noted that the curve estimation is more realistic and appropriate for the re
... Show MoreThe present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.
In this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes
The fingerprints are the more utilized biometric feature for person identification and verification. The fingerprint is easy to understand compare to another existing biometric type such as voice, face. It is capable to create a very high recognition rate for human recognition. In this paper the geometric rotation transform is applied on fingerprint image to obtain a new level of features to represent the finger characteristics and to use for personal identification; the local features are used for their ability to reflect the statistical behavior of fingerprint variation at fingerprint image. The proposed fingerprint system contains three main stages, they are: (i) preprocessing, (ii) feature extraction, and (iii) matching. The preprocessi
... Show MoreMetasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreThe aim of this study is to construct a Mathematical model connecting the variation between the ambient temperatures and the level of consumption of kerosene in Iraq during the period (1985-1995), and use it to predict the level of this consumption during the years (2005-2015) based on the estimation of the ambient temperatures.
The estimation of the initial oil in place is a crucial topic in the period of exploration, appraisal, and development of the reservoir. In the current work, two conventional methods were used to determine the Initial Oil in Place. These two methods are a volumetric method and a reservoir simulation method. Moreover, each method requires a type of data whereet al the volumetric method depends on geological, core, well log and petrophysical properties data while the reservoir simulation method also needs capillary pressure versus water saturation, fluid production and static pressure data for all active wells at the Mishrif reservoir. The petrophysical properties for the studied reservoir is calculated using neural network technique
... Show MoreThe present work included study of the effects of weather conditions such as solar radiation and ambient temperature on solar panels (monocrystalline 30 Watts) via proposed mathematical model, MATLAB_Simulation was used by scripts file to create a special code to solve the mathematical model , The latter is single –diode model (Five parameter) ,Where the effect of ambient temperature and solar radiation on the output of the solar panel was studied, the Newton Raphson method was used to find the output current of the solar panel and plot P-V ,I-V curves, the performance of the PV was determined at Standard Test Condition (STC) (1000W/m2)and a comparison between theoretical and experimental results were done .The best efficiency
... Show More