Preferred Language
Articles
/
joe-2239
A Multi-variables Multi -sites Model for Forecasting Hydrological Data Series
...Show More Authors

A multivariate multisite hydrological data forecasting model was derived and checked using a case study. The philosophy is to use simultaneously the cross-variable correlations, cross-site correlations and the time lag correlations. The case study is of two variables, three sites, the variables are the monthly rainfall and evaporation; the sites are Sulaimania, Dokan, and Darbandikhan.. The model form is similar to the first order auto regressive model, but in matrices form. A matrix for the different relative correlations mentioned above and another for their relative residuals were derived and used as the model parameters. A mathematical filter was used for both matrices to obtain the elements. The application of this model indicates it's capability of preserving the statistical characteristics of the observed series. The preservation was checked by using (t-test) and (F-test) for the monthly means and variances which gives 98.6% success for means and 81% success for variances. Moreover for the same data two well-known models were used for the sake of comparison with the developed model. The single-site singlevariable auto regressive first order and the multi-variable single-site models. The results of the three models were compared using (Akike test) which indicates that the developed model is more successful ,since it gave minimum (AIC) value for Sulaimania rainfall, Darbandikhan rainfall, and Darbandikhan evaporation, while Matalas model gave minimum (AIC) value for Sulaimania evaporation and Dokan rainfall, and Markov AR (1) model gave minimum (AIC) value for only Dokan evaporation).However, for these last cases the (AIC) given by the developed model is slightly greater than the minimum corresponding value.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Estimating the reliability function of the asymmetrical hybrid parallel-series system: Applied study at the state company for vegetable oils industry
...Show More Authors

The research studied and analyzed the hybrid parallel-series systems of asymmetrical components by applying different experiments of simulations used to estimate the reliability function of those systems through the use of the maximum likelihood method as well as the Bayes standard method via both symmetrical and asymmetrical loss functions following Rayleigh distribution and Informative Prior distribution. The simulation experiments included different sizes of samples and default parameters which were then compared with one another depending on Square Error averages. Following that was the application of Bayes standard method by the Entropy Loss function that proved successful throughout the experimental side in finding the reliability fun

... Show More
Scopus
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
The use of ARIMA, LSTM and GRU models in time series hybridization with practical application
...Show More Authors

The importance of forecasting has emerged in the economic field in order to achieve economic growth, as forecasting is one of the important topics in the analysis of time series, and accurate forecasting of time series is one of the most important challenges in which we seek to make the best decision. The aim of the research is to suggest the use of hybrid models for forecasting the daily crude oil prices as the hybrid model consists of integrating the linear component, which represents Box Jenkins models and the non-linear component, which represents one of the methods of artificial intelligence, which is long short term memory (LSTM) and the gated recurrent unit (GRU) which represents deep learning models. It was found that the proposed h

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Use A State Space Model and Forecast House Prices in Baghdad.
...Show More Authors

The purchase of a home and access to housing is one of the most important requirements for the life of the individual and the stability of living and the development of the prices of houses in general and in Baghdad in particular affected by several factors, including the basic area of the house, the age of the house, the neighborhood in which the housing is available and the basic services, Where the statistical model SSM model was used to model house prices over a period of time from 2000 to 2018 and forecast until 2025 The research is concerned with enhancing the importance of this model and describing it as a standard and important compared to the models used in the analysis of time series after obtaining the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 11 2026
Journal Name
Journal Of Physical Education
Specifying Standard Scores and Levels for Some Physical Variables as Indicators for Selecting Youth Soccer Players Aged (17 – 19) years Old
...Show More Authors

View Publication
Publication Date
Thu Jan 01 2009
Journal Name
مجلة العلوم الاحصائية
Robust Estimator for Semiparametric Generalized Additive Model
...Show More Authors

Generalized Additive Model has been considered as a multivariate smoother that appeared recently in Nonparametric Regression Analysis. Thus, this research is devoted to study the mixed situation, i.e. for the phenomena that changes its behaviour from linear (with known functional form) represented in parametric part, to nonlinear (with unknown functional form: here, smoothing spline) represented in nonparametric part of the model. Furthermore, we propose robust semiparametric GAM estimator, which compared with two other existed techniques.

View Publication Preview PDF
Publication Date
Tue Oct 22 2024
Journal Name
Iraqi Statisticians Journal
Inferential Methods for the Dagum Regression Model
...Show More Authors

The Dagum Regression Model, introduced to address limitations in traditional econometric models, provides enhanced flexibility for analyzing data characterized by heavy tails and asymmetry, which is common in income and wealth distributions. This paper develops and applies the Dagum model, demonstrating its advantages over other distributions such as the Log-Normal and Gamma distributions. The model's parameters are estimated using Maximum Likelihood Estimation (MLE) and the Method of Moments (MoM). A simulation study evaluates both methods' performance across various sample sizes, showing that MoM tends to offer more robust and precise estimates, particularly in small samples. These findings provide valuable insights into the ana

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison between Methods of Laplace Estimators and the Robust Huber for Estimate parameters logistic regression model
...Show More Authors

The logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .                                                

The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result.    &nbs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Nov 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Building a model to reduce the cost of hajj in the Iraqi Authority for Hajj and Umrah
...Show More Authors

The research is summarized in the construction of a mathematical model using the most common methods in the science of Operations Research, which are the models of transportation and linear programming to find the best solution to the problem of the high cost of hajj in Iraq, and this is done by reaching the optimum number of pilgrims traveling through both land ports and the number Ideal for passengers traveling through airports by Iraqi Airways, instead of relying on the personal experience of the decision-maker in Hajj and Umrah Authority by identifying the best port for pilgrim's travel, which can tolerate right or wrong, has been based on scientific methods of Operations Research, the researcher built two mathematical models

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
The Effect of Cyperus esculentus on Sperm Function Parameters in Prepubertal Mice as a Model for Human
...Show More Authors

The objective of this work was to study the effect of oral administration of Cyperus esculentus (CE) and its alcoholic extract on sperm function parameters in prepubertal mice as a model for human .The animals were divided into three groups each contains 6 animals .Group 1 was treated with 150 mg/ kg body weight /day of crude CE, group 2 was treated with same dose of alcohol extract of CE and group 3 regarded as control throughout six weeks period. The results showed a significant (p> 0.05) increase in the mean of sperm concentration ,sperm motility percent and progressive sperm motility between treated groups and control . There was no differences among groups in the mean of sperm normal morphology and sperm viability . No significa

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

 

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref