Preferred Language
Articles
/
joe-2239
A Multi-variables Multi -sites Model for Forecasting Hydrological Data Series
...Show More Authors

A multivariate multisite hydrological data forecasting model was derived and checked using a case study. The philosophy is to use simultaneously the cross-variable correlations, cross-site correlations and the time lag correlations. The case study is of two variables, three sites, the variables are the monthly rainfall and evaporation; the sites are Sulaimania, Dokan, and Darbandikhan.. The model form is similar to the first order auto regressive model, but in matrices form. A matrix for the different relative correlations mentioned above and another for their relative residuals were derived and used as the model parameters. A mathematical filter was used for both matrices to obtain the elements. The application of this model indicates it's capability of preserving the statistical characteristics of the observed series. The preservation was checked by using (t-test) and (F-test) for the monthly means and variances which gives 98.6% success for means and 81% success for variances. Moreover for the same data two well-known models were used for the sake of comparison with the developed model. The single-site singlevariable auto regressive first order and the multi-variable single-site models. The results of the three models were compared using (Akike test) which indicates that the developed model is more successful ,since it gave minimum (AIC) value for Sulaimania rainfall, Darbandikhan rainfall, and Darbandikhan evaporation, while Matalas model gave minimum (AIC) value for Sulaimania evaporation and Dokan rainfall, and Markov AR (1) model gave minimum (AIC) value for only Dokan evaporation).However, for these last cases the (AIC) given by the developed model is slightly greater than the minimum corresponding value.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Some NONPARAMETRIC ESTIMATORS FOR RIGHT CENSORED SURVIVAL DATA
...Show More Authors

The using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible parametric models and these models were nonparametric, many researchers, are interested in the study of the function of permanence and its estimation methods, one of these non-parametric methods.

For work of purpose statistical inference parameters around the statistical distribution for life times which censored data , on the experimental section of this thesis has been the comparison of non-parametric methods of permanence function, the existence

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Sep 08 2018
Journal Name
Proceedings Of The 2018 International Conference On Computing And Big Data
3D Parallel Coordinates for Multidimensional Data Cube Exploration
...Show More Authors

Visual analytics becomes an important approach for discovering patterns in big data. As visualization struggles from high dimensionality of data, issues like concept hierarchy on each dimension add more difficulty and make visualization a prohibitive task. Data cube offers multi-perspective aggregated views of large data sets and has important applications in business and many other areas. It has high dimensionality, concept hierarchy, vast number of cells, and comes with special exploration operations such as roll-up, drill-down, slicing and dicing. All these issues make data cubes very difficult to visually explore. Most existing approaches visualize a data cube in 2D space and require preprocessing steps. In this paper, we propose a visu

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Data Mining Techniques for Iraqi Biochemical Dataset Analysis
...Show More Authors

This research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
2nd International Conference On Materials Engineering & Science (iconmeas 2019)
A kinetic model for prodigiosin production by Serratia marcescens as a bio-colorant in bioreactor
...Show More Authors

View Publication
Scopus (18)
Crossref (17)
Scopus Crossref
Publication Date
Sun Jun 13 2021
Journal Name
Molecular Crystals And Liquid Crystals
Liquid crystal behavior of Ag(I) complexes based on a series of mesogenic 1,3,4-thiadiazole ligands
...Show More Authors

View Publication Preview PDF
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Journal Of Pakistan Association Of Dermatologists
Diverse cutaneous manifestations of pyoderma gangrenosum with triple therapeutic trial in a series of 53 cases
...Show More Authors

Scopus
Publication Date
Mon Mar 31 2025
Journal Name
The Iraqi Geological Journal
Evaluation of Machine Learning Techniques for Missing Well Log Data in Buzurgan Oil Field: A Case Study
...Show More Authors

The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 21 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Enhancing Spatial Accuracy of OpenStreetMap Data: A Geometric Approach
...Show More Authors

OpenStreetMap (OSM), recognised for its current and readily accessible spatial database, frequently serves regions lacking precise data at the necessary granularity. Global collaboration among OSM contributors presents challenges to data quality and uniformity, exacerbated by the sheer volume of input and indistinct data annotation protocols. This study presents a methodological improvement in the spatial accuracy of OSM datasets centred over Baghdad, Iraq, utilising data derived from OSM services and satellite imagery. An analytical focus was placed on two geometric correction methods: a two-dimensional polynomial affine transformation and a two-dimensional polynomial conformal transformation. The former involves twelve coefficients for ad

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Dec 31 2023
Journal Name
International Journal On Technical And Physical Problems Of Engineering
A Multiple System Biometric System Based on ECG Data
...Show More Authors

A Multiple System Biometric System Based on ECG Data

Scopus
Publication Date
Tue Dec 20 2022
Journal Name
2022 International Conference On Computer And Applications (icca)
Improve Data Mining Techniques with a High-Performance Cluster
...Show More Authors

View Publication
Scopus Crossref