This paper presents a nonlinear finite element modeling and analysis of steel fiber reinforced concrete (SFRC) deep beams with and without openings in web subjected to two- point loading. In this study, the beams were modeled using ANSYS nonlinear finite element
software. The percentage of steel fiber was varied from 0 to 1.0%.The influence of fiber content in the concrete deep beams has been studied by measuring the deflection of the deep beams at mid- span and marking the cracking patterns, compute the failure loads for each deep beam, and also study the shearing and first principal stresses for the deep beams with and without openings and with different steel fiber ratios. The above study indicates that the location of openings and the amount steel fiber are affects to the behavior and strength of deep beams. And also when the results of the experiments taken from the literature were compared with the results obtained from the beam modeled with ANSYS finite element program, it was shown that the results of computer model gave similar results to the experimental behavior.
Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad
... Show MoreSoftware-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreAbstract: The increased interest in developing new photonic devices that can support high data rates, high sensitivity and fast processing capabilities for all optical communications, motivates a pre stage pulse compressor research. The pre-stage research was based on cascading single mode fiber and polarization maintaining fiber to get pulse compression with compression factor of 1.105. The demand for obtaining more précised photonic devices; this work experimentally studied the behavior of Polarization maintaining fiber PMF that is sandwiched between two cascaded singe mode fiber SMF and fiber Bragg gratings FBG. Therefore; the introduced interferometer performed hybrid interference of both Mach-Zehnder
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreEsculin (ESCN) is used in the pharmaceutical industry with intravenous effect, stimulant and anti-inflammatory capillaries, like vitamin P. It is a significant component of many anti-inflammatory remedies such as esqusan, esflazid and anavenol [14]. It is also found in numerous other remedies available in the market such as proctosone, anustat, and ariproct.
To determine experimental conditions, to elucidate retention behavior of esculin in HILIC mode. Moreover, to suggest new ways to separate and determinate esculin in ointments.
Two hydrophilic c
Local and global bifurcations of food web model consists of immature and mature preys, first predator, and second predator with the current of toxicity and harvesting was studied. It is shown that a trans-critical bifurcation occurs at the equilibrium point
The goal of this paper is to design a robust controller for controlling a pendulum
system. The control of nonlinear systems is a common problem that is facing the researchers in control systems design. The Sliding Mode Controller (SMC) is the best solution for controlling a nonlinear system. The classical SMC consists from two phases. The first phase is the reaching phase and the second is the sliding phase. The SMC suffers from the chattering phenomenon which is considered as a severe problem and undesirable property. It is a zigzag motion along the switching surface. In this paper, the chattering is reduced by using a saturation function instead of sign function. In spite of SMC is a good method for controlling a nonlinear system b