This paper presents a nonlinear finite element modeling and analysis of steel fiber reinforced concrete (SFRC) deep beams with and without openings in web subjected to two- point loading. In this study, the beams were modeled using ANSYS nonlinear finite element
software. The percentage of steel fiber was varied from 0 to 1.0%.The influence of fiber content in the concrete deep beams has been studied by measuring the deflection of the deep beams at mid- span and marking the cracking patterns, compute the failure loads for each deep beam, and also study the shearing and first principal stresses for the deep beams with and without openings and with different steel fiber ratios. The above study indicates that the location of openings and the amount steel fiber are affects to the behavior and strength of deep beams. And also when the results of the experiments taken from the literature were compared with the results obtained from the beam modeled with ANSYS finite element program, it was shown that the results of computer model gave similar results to the experimental behavior.
To achieve sustainability in the field of civil engineering, there has become a great interest in developing reactive powder concrete RPC through the use of environmentally friendly materials to reduce the release of CO2 gas produced from cement factories as well as contribute to the recycling of industrial wastes that have a great impact on environmental pollution.
In this study, reactive powder concrete was prepared using total binder content of 800 kg/m3, water to binder ratio (0.275), and micro steel fibers 1% by volume of concrete. The experimental program included replacing fly ash with (8, 12, 16) % by cement weight to find the optimal ratio, which achieved the best mechanical proper
... Show MoreThe aim of this study is to propose mathematical expressions for estimation of the flexural strength of plain concrete members from ultrasonic pulse velocity (UPV) measurements. More than two hundred
pieces of precast concrete kerb units were subjected to a scheduled test program. The tests were divided into two categories; non-destructive ultrasonic and bending or rupture tests. For each precast unit, direct and indirect (surface) ultrasonic pulses were subjected to the concrete media to measure their travel velocities. The results of the tests were mointered in two graphs so that two mathematical relationships can be drawn. Direct pulse velocity versus the flexural strength was given in the first relationship while the second equati
Roller compacted concrete (RCC) is a concrete of no slump, no reinforcement, no finishing, and compacted using vibratory roller. When compared with conventional concrete, it contains less water content
when compared to traditional concrete. The RCC technique achieves significant time and cost savings during the construction of concrete. This study demonstrates the preparation of RCC slab of (38 ×38× 10) cm
samples by using roller compactor which is manufactured in local markets. The Hydrated lime additive is used to study the mechanical and physical properties of that RCC slab samples. This investigation is divided
into two main stages: The First stage consists of hammer compaction method with two gradation of aggregate, dense
The main aim of this research paper is investigating the effectiveness and validity of Meso-Scale Approach (MSA) as a modern technique for the modeling of plain concrete beams. Simply supported plain concrete beam was subjected to two-point loading to detect the response in flexural. Experimentally, a concrete mix was designed and prepared to produce three similar standard concrete prisms for flexural testing. The coarse aggregate used in this mix was crushed aggregate. Numerical Finite Element Analysis (FEA) was conducted on the same concrete beam using the meso-scale modeling. The numerical model was constructed to be a bi-phasic material consisting of cement mortar and coarse aggregate. The interface between the two c
... Show More The performance of asphalt concrete pavement has affected by many factors, the temperature is the most important environmental one which has a large effect on the structural behavior of flexible pavement materials. The main cause of premature failure of pavement is the rutting, Due to the viscoelastic nature of the asphalt cement, rutting is more pronounced in hot climate areas because the viscosity of the asphalt binder which is
inversely related to rutting is significantly reduced with the increase in temperature resulting in a more rut susceptible paving mixtures. The objective of this study is to determine the effect of temperatures variations on the permanent deformation parameters (perm
The aim of this study is to propose mathematical expressions for estimation of the flexural strength of plain concrete members from ultrasonic pulse velocity (UPV) measurements. More than two hundred pieces of precast concrete kerb units were subjected to a scheduled test program. The tests were divided into two categories; non-destructive ultrasonic and bending or rupture tests. For each precast unit, direct and indirect (surface) ultrasonic pulses were subjected to the concrete media to measure their travel velocities. The results of the tests were monitored in two graphs so that two mathematical relationships can be drawn. Direct pulse velocity versus the flexural strength was given in the first relationship while the second equation des
... Show MoreThis research of using Feldspar in the production self compacting concrete (SCC) ( 5,10,15 )% as partial replacement by weight of cement .In this research some of fresh properties of SCC ( slump flow used V-funnel test and filling ability used ( U- box test ) for concrete mixes and also some of the harden properties of SCC ( compressive and flexural tests ). The research results showed that negative effect of Feldspar on the fresh properties of self compacting concrete but the positive effect of Feldspar on the harden properties of self compacting concrete .
The action of high repeated trucks load associated with dramatically elevated ambient temperatures leads to the most harmful distress in asphalt pavements occurred in Iraq known as rutting. Essentially, it is produced from the accumulation of irrecoverable strains, which mainly occurred in the asphalt layers. That visually demonstrated as a longitudinal depression in the wheel paths as well as small upheavals to the sides. Poly Phosphoric Acid (PPA) has been used as a means of producing modified asphalt binders and the interest to use it has increased in recent years. The PPA provides modified asphalt binder, which is relatively cheaply produced compared to polymer-modified asphalt. In this paper, PPA was used by three-percentages 1
... Show MoreMoisture-induced damage is a serious problem that severely impairs asphaltic pavement and affects road serviceability. This study examined numerous variables in asphalt concrete mixtures to assess their impact on moisture damage resistance. Mix design parameters such as the asphalt content (AC) and aggregate passing sieve No. 4 (PNo. 4) were considered as variables during this study. Additionally, hydrated lime (HL) was utilized as a partial substitute for limestone dust (LS) filler at 1.5% by weight of the aggregate in asphalt concrete mixtures for the surface layer. This study also investigated the potential enhancement of traditional asphalt binders and mixtures by adding nano-additives, specifically nano-silica oxide (NS) and na
... Show More