When embankment is constructed on very soft soil, special construction methods are adopted. One of the techniques is a piled embankment. Piled (stone columns) embankments provide an economic and effective solution to the problem of constructing embankments over soft soils. This method can reduce settlements, construction time and cost. Stone columns provide an effective improvement method for soft soils under light structures such as rail or road embankments. The present work investigates the behavior of the embankment models resting on soft soil reinforced with stone columns. Model tests were performed with different spacing distances between stone columns and two lengths to diameter ratios of the stone columns, in addition to different embankment heights. A total number of 21 model tests were carried out on a soil with undrianed shear strength ≈ 10 kPa. The models consist of stone columns embankment at spacing to diameter ratio equal to 2.5, 3 and 4. Three embankment heights; 200 mm, 250 mm and 300 mm were conducted. Three earth pressure cells were used to measure directly the vertical effective stress on column at the top of the middle stone column under the center line of embankment and on the edge stone column for all models while the third cell was placed at the base of embankment between two columns to measure the vertical effective stress in reinforced soft soil directly. The embankment models constructed on soft clay treated with ordinary stone columns at spacing ratio equal 2.5 revealed maximum bearing improvement ratio equals (1.21, 1.44 and 1.7) for 200 mm, 250 mm and 300 embankment heights, respectively and maximum settlement improvement ratio equals (0.78, 0.67 and 0.56) for 200 mm, 250 mm and 300 embankment heights, respectively.
This paper attempts to develop statistical modeling for air-conditioning analysis in Jakarta, Indonesia, during an emergency state of community activity restrictions enforcement (Emergency CARE), using a variety of parameters such as PM10, PM2.5, SO2, CO, O3, and NO2 from five IoT-based air monitoring systems. The parameters mentioned above are critical for assessing the air quality conditions and concentration of air pollutants. Outdoor air pollution concentration variations before and after the Emergency CARE, which was held in Indonesia during the COVID-19 pandemic on July 3-21, 2021, were studied. An air quality monitoring system based on the IoT generates sensor data
... Show MoreIn this paper, we study the impact of the variable rotation and different variable on mixed convection peristaltic flow of incompressible viscoplastic fluid. This is investigated in two dimensional asymmetric channel, such as the density, viscosity, rate flow, Grashof number, Bingham number, Brinkman number and tapered, on the mixed convection heat transfer analysis for the peristaltic transport of viscoplastic fluid with consideration small Reynolds number and long wavelength, peristaltic transport in asymmetric channel tapered horizontal channel and non-uniform boundary walls to possess different amplitude wave and phases. Perturbation technique is used to get series solutions. The effects of different values of these parame
... Show MoreSince the beginning of the last century, the competition for water resources has intensified dramatically, especially between countries that have no agreements in place for water resources that they share. Such is the situation with the Euphrates River which flows through three countries (Turkey, Syria, and Iraq) and represents the main water resource for these countries. Therefore, the comprehensive hydrologic investigation needed to derive optimal operations requires reliable forecasts. This study aims to analysis and create a forecasting model for data generation from Turkey perspective by using the recorded inflow data of Ataturk reservoir for the period (Oct. 1961 - Sep. 2009). Based on 49 years of real inflow data
... Show MoreExperimental investigations had been done in this study to demonstrate the effect of natural particles used as a reinforcement material to unsaturated polyester resin. The tensile test and water absorption were investigated according to (ASTM D638) and (ASTM D570), respectively. The influence of sunflower husk and pomegranate husk particles, used as a reinforcement material, on the tensile strength, Young's modulus and water absorption with different weight fraction (3%, 7% and 10%) and particle grain size (50µm, 100 µm and 150 µm), has been investigated. The water absorption of polymer composites was studied by measuring the specimen weight before and after immersion in water for one hundred days. In the experiments of tensile test,
... Show MoreNear surface mounted (NSM) carbon fibers reinforced polymer (CFRP) reinforcement is one of the techniques for reinforcing masonry structures and is considered to provide significant advantages. This paper is composed of two parts. The first part presents the experimental study of brick masonry walls reinforced with NSM CFRP strips under combined shear-compression loads. Masonry walls have been tested under vertical compression, with different bed joint orientations 90° and 45° relative to the loading direction. Different reinforcement orientations were used including vertical, horizontal, and a combination of both sides of the wall. The second part of this paper comprises a numerical analysis of unreinforced brick masonry (URM) wa
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreThe current study suggested a thermal treatment as a necessary proactive step in improving the adsorption capacity of bio-waste for contaminants removal in wastewater. This approach was based on the experimental and histological investigation of biowaste pods shell. This investigation showed that these shells compose of parenchyma cells that store secondary metabolites compounds produced from cells were exhibited in present study. The results also reported that these compounds are extracted directly from the cells as soon as they are exposed to an aqueous solution, hampering their use as an adsorbent material. The increase in the weight of bio-waste adsorbent at unit liquid volume increases the production of secondary metabolites compounds
... Show More