This paper reports an experimental study regarding the influence of vertical oscillations on the natural convection heat transfer from a vertical channel. An experimental set-up was constructed and calibrated; the vertical channel was tested in atmosphere at 25o
C. The channel-to-ambient temperature difference was varied with the power supply to the electrical heater ranging between
15W to 70W divided into five levels. Data sets were measured under different operating condition from a test rig under six vibrating velocities (VVs) levels ranging from (5-30 m/s) in addition to the stationary state. The results show that the maximum heat transfer enhancement factor (E) occurs at Rayleigh number (Ra=2.328×103 ) and vibrational Reynolds number ( Rev=6.365×103 ); this
enhancement reached to (7.685%).The results also illustrated that the temperature gradient along the channel wall length was enhanced by inducing the oscillatory motion to the channel. Rayleigh and vibrational Reynolds numbers were ranging between (2.306×103 - 5.564×103) and (0.0 - 19.86×103) respectively. Finally, A correlation which summarized the effects of both Ra and Rev was
determined for the Nusselt numbers.
Cold atmospheric plasma (CAP) is used widely in medical and biological fields because of non-thermal effected. Direct application of plasma is preferred in medical functions, so, direct application of cold plasma has obtained by the floating electrode dielectric barrier discharge (FE-DBD) system. The purpose of this paper to review the effect of (CAP) on the reproductive hormones (testosterone, LH, E2, progesterone, for male rats. The study appeared that no significant effect on E2 and progesterone hormone for all time of exposure, besides this significant difference in LH hormone (P<0.05) at 15 sec, (P<0.0001) at 30, 90 sec and (P<0.001) at 60 sec of exposure to plasma. Added to that significant difference (P<0.01) at 15, 30, 60 sec and no
... Show MoreFilms of CdSe have been prepared by evaporation technique with thickness 1µm. Doping with Cu was achieved using annealing under argon atmosphere . The Structure properties of these films are investigated by X-ray diffraction analysis. The effect of Cu doping on the orientation , relative intensity, grain size and the lattice constant has been studied. The pure CdSe films have been found consist of amorphous structure with very small peak at (002) plane. The films were polycrystalline for doped CdSe with (1&2wt%) Cu contents and with lattice constant (a=3.741,c=7.096)A°, and it has better crystallinty as the Cu contents increased to (3&5wt%) Cu. The reflections from [(002), (102). (110), (112), and (201)]planes are more prominen
... Show Moren-Hexane conversion enhancement was studied by adding TCE (Trichloro-ethylene) on feed stream using 0.3%Pt/HY zeolite catalyst. All experiments were achieved at atmospheric pressure and on a continuous laboratory unit with a fixed bed reactor at a temperature range 240-270◦C, LHSV 1-3h-1, H2/nC6 mole ratio 1-4.
By adding 435 ppm of TCE, 49.5 mole% conversion was achieved at LHSV 1h-1, temperature of 270ºC and H2/nC6 mole ratio of 4, while the conversion was 18.3 mol% on the same catalyst without adding TCE at the same conditions. The activation energy decreased from 98.18 for pure Pt/HY zeolite to 82.83 kJ/mole by adding TCE. Beside enhancement the activity, selectivity and product distribution enhanced by providing DMB (Dimethyl b
The CdSe pure films and doping with Cu (0.5, 1.5, 2.5, 4.0wt%) of thickness 0.9μm have been prepared by thermal evaporation technique on glass substrate. Annealing for all the prepared films have been achieved at 523K in vacuum to get good properties of the films. The effect of Cu concentration on some of the electrical properties such as D.C conductivity and Hall effect has been studied.
It has been found that the increase in Cu concentration caused increase in d.c conductivity for pure CdSe 3.75×10-4(Ω.cm)-1 at room temperatures to maximum value of 0.769(Ω.cm)-1 for 4wt%Cu.All films have shown two activation energies, where these value decreases with increasing doping ratio. The maximum value of activation energy was (0.319)eV f
Nowadays, many new technologies developed in a lot of countries. These technologies are promising in many areas such as environmental monitoring, precision agriculture as well as in animal production. The purpose of this study was to define a better understanding of how new and advanced technologies affect the agriculture and livestock sector alike. Although agriculture and animal husbandry are among the most important sectors, advanced equipment and information technology cannot be used adequately. This situation leads to low production efficiency. It is also known that there can be a significant difference in temperature between the position of the climate control sensor (room temperature) and the area occupied by the animal. This study e
... Show MoreDespite all the possibilities held by Iraq for the production of poultry , but there is low and clear in the level of production and a rise in costs and a decline in per capita consumption is due to a number of reasons, including poor investment , stop government subsides , dumping policies , market Bolmottagat imported , the contribution of the merchant squandering of national capacity , weak base material for the growth of this sector , the security situation and the crisis of energy and others .
Despite all this research has shown that there are great investment opportunities in this very sector of the market size and absorptive capacity of his and the growth of per capita income and level of cul
... Show MoreThe study showed significant differences between the average weight lens and the average amount protein in the lens between that Kestrel Falco tinnunculus L. and the Collared Dove Streptopelia decaocto F. , also the study electrical migration of lens proteins having one bundle of crystalline –? in Kestrel compared with three bundles in Collared Dove, two bundles of crystalline – ? in both , and crystalline – ? appeared as one bundle in both birds.
Polish Academy of Sciences
The monetary policy is a vital method used in implementing monetary stability through: the management of income and adjustment of the price (monetary targets) in order to promote stability and growth of real output (non-cash goals); the tool of interest rate and direct investment guides or movement towards the desired destination; and supervisory instruments of monetary policy in both quantitative and qualitative. The latter is very important as a standard compass to investigate the purposes of the movement monetary policy in the economy. The public and businesses were given monetary policy signals by those tools. In fiscal policy, there are specific techniques to follow to do the spending and collection of revenue. This is done in order to
... Show More