Preferred Language
Articles
/
joe-2231
Soil-Structure Interaction of Retaining Walls under Earthquake Loads
...Show More Authors

The study is devoted to both static and earthquake response analysis of retaining structures acted upon by lateral earth pressure. Two main approaches were implemented in the analysis, namely, the Mononobe-Okabe analytical method and the numerical Finite element procedure as provided in the ready software ABAQUS with explicit dynamic method. A basic case study considered in the present work is the bridge approach retaining walls as a part of AL-Jadiriya bridge intersection to obtain the effects of the backfill and the ground water on the retaining wall response including displacement of the retaining structure in addition to the behavior of the fill material. Parametric studies were carried out to evaluate the effects of several factors such as vertical and horizontal components of the earthquake, maximum peak acceleration, angle of friction, damping ratio, height of the wall and groundwater level within the medium of fill. Three heights of retaining walls were considered for those above mentioned factors, these are (2.9m, 4.7m and6.7m). A comparison is made between the responses obtained on the basis of finite element analysis with those obtained using the Mononobe-Okabe method. It is found that the lateral wall responses obtained using the FE were larger than those calculated by the Mononobe-Okabe method for all heights of the retaining wall, it was also found that pore pressure of the ground water depends on the water flow through the backfill during the earthquake. The distribution of the dynamic earth pressure on the wall is nonlinear and depends on the earthquake ground acceleration in addition to the wall height and soil properties. Based on the numerical analysis and the results obtained from the parametric studies carried out, two expressions are proposed to evaluate the maximum lateral wall response in terms of wall height, soil properties and earthquake base excitation acceleration, and hence the dynamic earth pressure acting on the retaining structure.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FINITE ELEMENT ANALYSIS OF STRIP FOOTING RESTING ON GIBSON-TYPE SOIL BY USING MATLAB
...Show More Authors

This research presents a method of using MATLAB in analyzing a nonhomogeneous soil (Gibson-type) by
estimating the displacements and stresses under the strip footing during applied incremental loading
sequences. This paper presents a two-dimensional finite element method. In this method, the soil is divided into a number of triangle elements. A model soil (Gibson-type) with linearly increasing modulus of elasticity with depth is presented. The influences of modulus of elasticity, incremental loading, width of footing, and depth of footing are considered in this paper. The results are compared with authors' conclusions of previous studies.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Three-Dimensional Finite Element Simulation of the Buried Pipe Problem in Geogrid Reinforced Soil
...Show More Authors

Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.

This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Estimation the Radioactive Pollution by Uranium in the Soil of Al-Kut City/ Iraq
...Show More Authors

The aim of the present work, was measuring of uranium concentrations in 25 soil samples from five locations of Al-Kut city. The samples taken from different depths ranged from soil surface to 60cm step 15 cm, for this measurement of uranium concentrations .The most widely used technique SSNTDs was chosen to be the measurement technique. Results showed that the higher concentrations were in Hai Al- Kafaat which recorded 1.49 ± 0.054 ppm . The uranium content in soil samples were less than permissible limit of UNSCEAR(11.7ppm).

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Numerical Study of Piled Raft Foundation in Non-Homogeneous Soil Using Finite Element Method
...Show More Authors

This paper analyzes a piled-raft foundation on non-homogeneous soils with variable layer depth percentages. The present work aims to perform a three-dimensional finite element analysis of a piled-raft foundation subjected to vertical load using the PLAXIS 3D software. Parametric analysis was carried out to determine the effect of soil type and initial layer thickness. The parametric study showed that increasing the relative density from 30 % to 80 % of the upper sand layer and the thickness of the first layer has led to an increase in the ultimate load and a decrease in the settlement of piled raft foundations for the cases of sand over weak soil.  In clay over weak soil, the ultimate load of the piled raft foundation w

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Journal Of The College Of Education For Women
The Soil Effect on Subsidence in Area of Al- Karkh District A Geomorphologic Study
...Show More Authors

Soil is considered one of the main factors of subsidence phenomena which
became continually happen in Baghdad (Ghazalia, Ameria, and Hay al-Amyl)
causing bad effects as shortage of drinking water, traffic jam and formation
swamps.
This thesis depends on soil study to a depth 15 meters, due to its
importance in subsidence. This done through specifying its chemical physical
properties.
Soil within Iraq climate, in case of water stopping for any reason it contract
and shrink away especially when it exposed to high pressure these factors
finally caused subsidence. In case of leakage underground water or that of
damaged water pipes this will contribute to chemical reactions which damage soil
structure and incr

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 06 2016
Journal Name
Baghdad Science Journal
A study of Soil Invertebrates community in a Date - Palm plantation in Baghdad, Iraq
...Show More Authors

Soil invertebrates community an important role as part of essential food chain and responsible for the decomposition in the soil, helps soil aeration , nutrients recycling and increase agricultural production by providing the essential elements necessary for photosynthesis and energy flow in ecosystems.The aim of the present study was to investigate the soil invertebrates community in one of the date palms plantation in Aljaderia district South of Baghdad, , and their relationships with some physical and chemical properties of the soil , as Five randomly distributed replicates of soil samples were collected monthly. Invertebrates samples were sorted from the soil with two methods, direct method to isolate large invertebrates and indirec

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Plant Archives
Nitrification and urea hydrolysis in arid soil amended with different levels of bio-solid
...Show More Authors

Scopus
Publication Date
Wed Mar 27 2013
Journal Name
Engineering And Technology Journal
Total and Matric Suction in Unsaturated Soil with the Existence of Different Salts Content
...Show More Authors

Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Heave Behavior of Granular Pile Anchor-Foundation System (GPA-Foundation System) in Expansive Soil
...Show More Authors

Granular  Pile  Anchor  (GPA)  is  one  of  the  innovative  foundation  techniques,  devised  for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of exp

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Indian Journal Of Ecology
Horizontal variability of some soil properties in wasit governorate by using time series analysis
...Show More Authors

Scopus (2)
Scopus