Preferred Language
Articles
/
joe-2231
Soil-Structure Interaction of Retaining Walls under Earthquake Loads

The study is devoted to both static and earthquake response analysis of retaining structures acted upon by lateral earth pressure. Two main approaches were implemented in the analysis, namely, the Mononobe-Okabe analytical method and the numerical Finite element procedure as provided in the ready software ABAQUS with explicit dynamic method. A basic case study considered in the present work is the bridge approach retaining walls as a part of AL-Jadiriya bridge intersection to obtain the effects of the backfill and the ground water on the retaining wall response including displacement of the retaining structure in addition to the behavior of the fill material. Parametric studies were carried out to evaluate the effects of several factors such as vertical and horizontal components of the earthquake, maximum peak acceleration, angle of friction, damping ratio, height of the wall and groundwater level within the medium of fill. Three heights of retaining walls were considered for those above mentioned factors, these are (2.9m, 4.7m and6.7m). A comparison is made between the responses obtained on the basis of finite element analysis with those obtained using the Mononobe-Okabe method. It is found that the lateral wall responses obtained using the FE were larger than those calculated by the Mononobe-Okabe method for all heights of the retaining wall, it was also found that pore pressure of the ground water depends on the water flow through the backfill during the earthquake. The distribution of the dynamic earth pressure on the wall is nonlinear and depends on the earthquake ground acceleration in addition to the wall height and soil properties. Based on the numerical analysis and the results obtained from the parametric studies carried out, two expressions are proposed to evaluate the maximum lateral wall response in terms of wall height, soil properties and earthquake base excitation acceleration, and hence the dynamic earth pressure acting on the retaining structure.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 28 2023
Journal Name
Journal Of Planner And Development
Using GIS to identify hazardous earthquake locations in Iran

The objective of all planning research is to plan for human comfort and safety, and one of the most significant natural dangers to which humans are exposed is earthquake risk; therefore, earthquake risks must be anticipated, and with the advancement of global technology, it is possible to obtain information on earthquake hazards. GIS has been utilized extensively in the field of environmental assessment research due to its high potential, and GIS is a crucial application in seismic risk assessment. This paper examines the methodologies used in recent GIS-based seismic risk studies, their primary environmental impacts on urban areas, and the complexity of the relationship between the applied methodological approaches and the resulting env

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Experimental Investigation of Under Reamed Pile Subjected to Dynamic Loading in Sandy Soil
Abstract<p>This paper presents an experimental study between uniform pile and different types of under-reamed pile, single bulb. The under-reamed piles are piles with enlarged bases that are suitable to resist considerable movement of the ground, filed up ground, soft clay, and loose sand which have advantages to increase the soil strength, uplift capacity, and decrease the displacement. In the present study, there are experimental analyze to performance the suitable under-reamed type under sinusoidal load from vertical vibration (motor-oscillator was mounted directly on the pile cap. The main finding of this work is that the pile capacity increases with the ream and that all stress values of so</p> ... Show More
Scopus (3)
Crossref (3)
Scopus Crossref
View Publication
Publication Date
Wed Jan 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Numerical Analysis of Under-Reamed Pile Subjected to Dynamic Loading in Sandy Soil
Abstract<p>Under-reamed piles are piles with enlarged bases, which may be single bulb or multi bulbs. Such piles are suitable for resisting considerable soil movement of filed up ground, soft clay, and loose sand and have the advantages of increasing the soil strength and decreasing the displacement. In the present study, the finite element method was used to analyse the performance of a single pile with under-reamed bulbs of different shapes, that is, single cone, double cone, and half and full sphere, embedded in homogeneous, poorly graded sandy soil. The model of under-reamed pile was made of reinforced concrete and the bulb located at the middle of the embedded length of the pile. The dynami</p> ... Show More
Scopus (18)
Crossref (16)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Sep 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect of Interaction Betw·een Phosphorus and Zink in Some Morphological Features of Two Varieties of Wheat Grown in Gypsum Soil

A  biological   experirne.rit   was  CQhducted ·ll1  the   (Ibn-  Al­

Haitham).  University        of   Baghdad  for   growing   seasens   on   of

2004/2005 (by using gypsum soil taken from Al- Doar area I Salah Al­ Dean provinc)  to stucl·- the effect three levels of phosphorus (0, 400,

SOO)rng ! pot and four  levels of zinc (0, 10,.. J 5, 2.0) tngf I pot on some

features of two  varieties -Qf    wheat, (triticum aestivurn var. rateh)and

(Triticum aestiv1lm Var. Ipa 99)..

R't

... Show More
View Publication Preview PDF
Publication Date
Fri Nov 12 2021
Journal Name
Transportation Infrastructure Geotechnology
Scopus (2)
Crossref (3)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
View Publication Preview PDF
Publication Date
Tue Feb 28 2023
Journal Name
Applied System Innovation
Earthquake Hazard Mitigation for Uncertain Building Systems Based on Adaptive Synergetic Control

This study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulat

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
E3s Web Of Conferences
Effect of Halabjah Earthquake on Al-Wand Earth Dam: Numerical Analysis

The Halabja earthquake occurred on 12/11/2017 in Iraq, with a magnitude of 7.3 Mw, which happened in the Iraqi-Iranian borders. This earthquake killed and injured many people in the Kurdish region in the north of the country. There is no natural disaster more dangerous than earthquake, especially it occurs without warning, great attention must be paid to the impact of earthquakes on the soil and preparing for a wave of earthquakes. Numerical modeling using specific elements is considered a powerful tool to investigate the required behavior of structures in Geotechnical engineering, and the main objective of this is to assess the response of the Al-Wand dam to the Halabja earthquake, as this dam is located in an area that has been su

... Show More
Scopus (1)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Sun Nov 15 2020
Journal Name
Anbar Journal Of Engineering Sciences
Crossref
View Publication
Publication Date
Fri Mar 01 2019
Journal Name
Iraqi Journal Of Physics
Wear rate of epoxy resin reinforced with multi walls carbon nanotubes

In this study, nanocomposites have been prepared by adding
multiwall carbon nanotubes (MWCNTs) with weight ratios (0, 2, 3,
4, 5) wt% to epoxy resin. The samples were prepared by hand lay-up
method. Influence of an applied load before and after immersion in
sodium hydroxide (NaOH) of normality (0.3N) for (15 days) at
laboratory temperature on wear rate of Ep/MWCNTs
nanocomposites was studied. The results showed that wear rate
increases with increasing the applied load for the as prepared and
immersed samples and after immersion. It was also found that epoxy
resin reinforced with MWCNTs has wear rate less than neat epoxy.
The sample (Ep + 5wt% of MWCNTs) has lower wear rate. The
immersion effect in base so

... Show More
Crossref
View Publication Preview PDF