Buckling analysis of composite laminates for critical thermal (uniform and linear) and mechanical loads is reported here. The objective of this work is to carry out theoretical investigation of buckling analysis of composite plates under thermomechanical loads, and experimental investigation under mechanical loads. The analytical investigation involved certain mathematical preliminaries, a study of equations of orthotropic elasticity for classical laminated plate theory (CLPT), higher order shear deformation plate theory (HSDT) , and numerical analysis (Finite element method), then the equation of motion are derived and solved using Navier method and Levy method for symmetric and anti-symmetric cross-ply and angle-ply laminated plates to obtain buckling load by solving eigenvalue problem for different boundary conditions under different thermo-mechanical loading It Also contained a verification study of these
methods with those published by other researchers. The results obtained gives good agreement which shows that maximum percentage discrepancy was 7.6152 %. The experimental investigation is to find mechanical properties at room temperature of glasspolyester such as longitudinal, transverse and shear modulus under tension test. Also, to find critical load that cause buckling under buckling test. Analytical and numerical results of critical buckling load studied the effect of Boundary conditions, No. of layers, No. of half wavelengths in y-direction, lamination angle, aspect ratio ,and thickness ratio on buckling load under different thermo-mechanical loading condition
The purpose of this experiment was to determine the relationship between the path coefficient and seed rate for four different barley cultivars (Amal, Ibaa 265, Ibaa 99, and Buhooth 244) during the 2019-2020 winter season. The experiment was carried out using a split plot design with three replications according to a randomized complete block design (RCBD). The highest positive thru effect on grain yield was found for flag leaf area and harvest index at aseeding rate of 130 kg.h-1; the highest positive direct effect on grain yield was found for flag leaf area and plant height at aseeding rate of 160 kg.h-1; and the highest positive direct effe
The idea of using slender Reinforced Concrete (RC) columns with cross-shaped (+-shaped) instead of columns with square-shaped was discussed in this paper. The use of +-shaped columns provides many architectural and structural advantages, such as avoiding prominent columns edges and improved the structural response of member. Therefore, this study explores the structural response of slender +-shaped columns experimentally and numerically by nonlinear finite element analysis using Abaqus simulation tools. The results showed an excellent convergence in strength between numerical and test results with an average standard deviation of 0.05 and 0.07. Besides that, the use of +-shaped column
In this study, chemical oxidation was employed for the synthesis of polypyrrole (PPy) nanofiber. Furthermore, PPy has been subjected to treatment using nanoparticles of neodymium oxide (Nd2O3), which were produced and added in a certain ratio. The inquiry centered on the structural characteristics of the blend of polypyrrole and neodymium oxide after their combination. The investigation utilises X-ray diffraction (XRD), FTIR, and Field Emission Scanning Electron Microscopy (FE-SEM) for PPy, 10%, 30%, and 50% by volume of Nd2O3. According to the electrochemical tests, it has been noted that the nanocomposites exhibit a substantial amount of pseudocapacitive activity.
سمير خلف فياض * و محسن طالب د.نوال عزت عبد اللطيف*, مجلة الهندسة والتكنولوجيا, 2010
In this research, damping properties for composite materials were evaluated using logarithmic decrement method to study the effect of reinforcements on the damping ratio of the epoxy matrix. Three stages of composites were prepared in this research. The first stage included preparing binary blends of epoxy (EP) and different weight percentages of polysulfide rubber (PSR) (0%, 2.5%, 5%, 7.5% and 10%). It was found that the weight percentage 5% of polysulfide was the best percentage, which gives the best mechanical properties for the blend matrix. The advantage of this blend matrix is that; it mediates between the brittle properties of epoxy and the flexible properties of a blend matrix with the highest percentage of PSR. The second stage
... Show More