Buckling analysis of composite laminates for critical thermal (uniform and linear) and mechanical loads is reported here. The objective of this work is to carry out theoretical investigation of buckling analysis of composite plates under thermomechanical loads, and experimental investigation under mechanical loads. The analytical investigation involved certain mathematical preliminaries, a study of equations of orthotropic elasticity for classical laminated plate theory (CLPT), higher order shear deformation plate theory (HSDT) , and numerical analysis (Finite element method), then the equation of motion are derived and solved using Navier method and Levy method for symmetric and anti-symmetric cross-ply and angle-ply laminated plates to obtain buckling load by solving eigenvalue problem for different boundary conditions under different thermo-mechanical loading It Also contained a verification study of these
methods with those published by other researchers. The results obtained gives good agreement which shows that maximum percentage discrepancy was 7.6152 %. The experimental investigation is to find mechanical properties at room temperature of glasspolyester such as longitudinal, transverse and shear modulus under tension test. Also, to find critical load that cause buckling under buckling test. Analytical and numerical results of critical buckling load studied the effect of Boundary conditions, No. of layers, No. of half wavelengths in y-direction, lamination angle, aspect ratio ,and thickness ratio on buckling load under different thermo-mechanical loading condition
Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame
The studied succession is deposited during late Berriasian-Aptian interval, which is represented by the Zubair, Ratawi, Yamama formations. The present study includes stratigraphic development and basin analysis for 21 boreholes (Rachi-1, 2; Rifaei-1, Diwan- 1; Ratawi-1, 2; Halfaia-5; West Qurna 12, 15; Nahr Umr-7,8; Zubair-47,49; North Rumaila- 72, 131, 158; Suba-7; Majnoon-2, 3 and Luhais-2, 12) distributed within 13 oil fields in the southern Iraq. The back-stripping process determined the original direction of basin depocenter for the studied succession. The Yamama basin in the study area stretches from southeast to southwest with single depocenters, it was located in the southeast of the study area near wells Mj-2, Mj-3.NR-8 and
... Show MoreBackground: Prophylaxis methods are used to mechanically remove plaque and stain from tooth surfaces; such methods give rise to loss of superficial structure and roughen the surface of composites as a result of their abrasive action. This study was done to assess the effect of three polishing systems on surface texture of new anterior composites after storage in artificial saliva. Materials and methods: A total of 40 Giomer and Tetric®N-Ceram composite discs of 12 mm internal diameter and 3mm height were prepared using a specially designed cylindrical mold and were stored in artificial saliva for one month and then samples were divided into four groups according to surface treatment: Group A (control group):10 specimens received no surfa
... Show MoreAn experimental program was conducted to determine the residual of composite Steel Beams-Reinforced Concrete (SB-RC) deck floors fabricated from a rolled steel beam topped with a reinforced concrete slab, exposed to high temperatures (fire flame) of 300, 500, and 700ºC for 1 hour, and then allowed to cool down by leaving them in the lab condition to return to the ambient temperature. The burning results showed that, by exposing them to a fire flame of up to 300ºC, no serious permanent deflection occurred. It was also noticed that the specimen recovered 93% of 19.2 mm of the deflection caused by burning. The recovered deflection of burned composite SB-RC deck floor at 500ºC was 40% of 77.9 mm of the deflection caused by burning with a res
... Show More