Most intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypted HTTP subset traffic of DARPA 1999 data set, from 55.234% in the PAYL system alone to 99.94% in the proposed system; due to the existence of the neural network self-organizing map (SOM). In addition SOM decreases the ratio of false positive from 44.676% in the PAYL system alone to 5.176% in the proposed system. The proposed system provides 80% detection ability of smart worms that are meant to invade the PAYL detector in the PAYL system alone, due to the existence of the randomization stage in the proposed system.
Medium Access Control (MAC) spoofing attacks relate to an attacker altering the manufacturer assigned MAC address to any other value. MAC spoofing attacks in Wireless Fidelity (WiFi) network are simple because of the ease of access to the tools of the MAC fraud on the Internet like MAC Makeup, and in addition to that the MAC address can be changed manually without software. MAC spoofing attacks are considered one of the most intensive attacks in the WiFi network; as result for that, many MAC spoofing detection systems were built, each of which comes with its strength and weak points. This paper logically identifies and recognizes the weak points
and masquerading paths that penetrate the up-to-date existing detection systems. Then the
A Multiple System Biometric System Based on ECG Data
The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
The current research aims to shed light on the Global Reporting Initiative (GRI), which helps to report financial and non-financial information by economic units in general and listed on the Iraq Stock Exchange in particular. The research was based on a main premise that apply the criteria of the Global Reporting Initiative (GRI) would provide useful information to users to help them make appropriate decisions. To achieve the goal of the research, the descriptive analysis method was used, and quantitative analysis was used. At the level of the descriptive analysis method, a desk survey was conducted. As for the quantitative analysis, it relied on applied data through a questionnaire form (Questioners) as a research tool, and the
... Show MoreAbstract
The research aims to identify tax exemptions, their objectives and types, as well as to shed light on the concept of sustainable development, its objectives, dimensions and indicators (economic, social and environmental), as well as to analyze the relationship between tax exemptions and economic development, in addition to measuring and analyzing the impact of tax exemptions on economic development in Iraq for the period ( 2015 - 2021) using the NARDL model. The research problem centers on the fact that failure to employ financial policy tools correctly led to a weakness in achieving economic justice, which leads to a failure to improve social welfar
... Show MoreRation power plants, to generate power, have become common worldwide. One such one is the steam power plant. In such plants, various moving parts of heavy machines generate a lot of noise. Operators are subjected to high levels of noise. High noise level exposure leads to psychological as well physiological problems; different kinds of ill effects. It results in deteriorated work efficiency, although the exact nature of work performance is still unknown. To predict work efficiency deterioration, neuro-fuzzy tools are being used in research. It has been established that a neuro-fuzzy computing system helps in identification and analysis of fuzzy models. The last decade has seen substantial growth in development of various neuro-fuzzy systems
... Show MoreInternal control system is a safety valve that preserves economic units assets and ensure the accuracy of financial data, as well as to obligation in the laws, regulations, administrative policies ,and improve the efficiency, effectiveness and economic of operation, so it has become imperative for these units attention to internal and developed control system The research problem in exposure the economic units when the exercise of their business to many of the risks to growth or hinder the achievement of its objectives and the risks (financial, operational, strategy, risk) and not it rely on risk Assessment according to modern scientific methods, as in Brown's risk Classification, Which led to the weakness of the internal control identif
... Show More