teen sites Baghdad are made. The sites are divided into two groups, one in Karkh and the other in Rusafa. Assessing the underground conditions can be occurred by drilling vertical holes called exploratory boring into the ground, obtaining soil (disturbed and undisturbed) samples, and testing these samples in a laboratory (civil engineering laboratory /University of Baghdad). From disturbed, the tests involved the grain size analysis and then classified the soil, Atterberg limit, chemical test (organic content, sulphate content, gypsum content and chloride content). From undisturbed samples, the test involved the consolidation test (from this test, the following parameters can be obtained: initial void ratio eo, compression index cc, swelling index cs , coefficient of consolidation cv , coefficient of volume change mv, maximum preconsolidation stress Pc , Effective overburden pressure Po )and shear test (the following parameters can be obtained: undrained cohesion cu, angle of friction φ. In-situ testing was carried out by the standard penetration test in order to obtain the penetration resistance of the soil strata in a bore hole. Database for Baghdad soils is made using different GIS techniques connecting the spatial locations of those soils with their properties (ِAtterberg Limits, Specific Gravity, Grain size Analysis, Shear Strength parameters, Consolidation parameters), Borehole log, Site profile using the attribute tables, hyperlinks, metadata and SQL (System Query Language), so GIS techniques give the facilities for adding, editing and analyzing the existingdata as well as the any future data of Baghdad soils.
In this study, tin oxide (SnO2) and mixed with cadmium oxide (CdO) with concentration ratio of (5, 10, 15, 20)% films were deposited by spray pyrolysis technique onto glass substrates at 300ºC temperature. The structure of the SnO2:CdO mixed films have polycrystalline structure with (110) and (101) preferential orientations. Atomic force microscopy (AFM) show the films are displayed granular structure. It was found that the grain size increases with increasing of mixed concentration ratio. The transmittance in visible and NIR region was estimated for SnO2:CdO mixed films. Direct optical band gap was estimated for SnO2 and SnO2 mixed CdO and show a decrease in the energy gap with increasing mixing ratio. From Hall measurement, it was fou
... Show MoreUndoped and Al-doped CdO thin films have been prepared by vacuum thermal evaporation on glass substrate at room temperature for various Al doping ratios (0.5, 1 and 2)wt.% . The films are characterized by XRD and AFM surface morphology properties. XRD analysis showed that CdO:Al films are highly polycrystalline and exhibit cubic crystal structure of lattice constant averaged to 0.4696 nm with (111) preferred orientation. However, intensity of all peaks rapidly decreases which indicates that the crystallinity decreases with the increase of Al dopant. The grain size decreases with Al content (from 60.81 to 48.03 nm). SEM and AFM were applied to study the morphology an
... Show MoreCdS and CdS:Sn thin films were successfully deposited on glass
substrates by spray pyrolysis method. The films were grown at
substrate temperatures 300 C°. The effects of Sn concentration on the
structural and optical properties were studied.
The XRD profiles showed that the films are polycrystalline with
hexagonal structure grown preferentially along the (002) axis. The
optical studies exhibit direct allowed transition. Energy band gap
vary from 3.2 to 2.7 eV.
The objective of this paper is determining the petrophysical properties of the Mauddud Formation (Albian-Early Turonian) in Ratawi Oil Field depending on the well logs data by using interactive petrophysical software IP (V4.5). We evaluated parameters of available logs that control the reservoir properties of the formation, including shale volume, effective porosity, and water saturation. Mauddud Formation is divided into five units, which are distinguished by various reservoir characteristics. These units are A, B, C, D, and E. Through analyzing results of the computer processed interpretation (CPI) of available wells, we observed that the main reservoir units are B and D, being distinguished by elevated values of eff
... Show MoreRecently times, industrial development has increased, including plastic industries, and since plastic has a very long analytical life, it will cause environmental pollution. Therefore studies have resorted to reusing recycled plastic waste (sustainable plastic) to produce environmentally friendly concrete (green concrete). In this research, some studies were reviewed and then summarized into several things, including the percentage of plastic replacement from the aggregate and the effect of this percentage on the fresh properties of concrete, such as the workability and the effect of plastic waste on the hardening properties of concrete such as dry density, compressive, tensile and flexural strength.
This paper aims to calculate the petrophysical properties in the Al-Ahdab field in the middle of Iraq within the Mauddud Formation. This study was based on the information available from well logs. The interactive petrophysical software IP (V4.5) was used to calculate the porosity, hydrocarbon saturation and shale volume, divide the formation into reservoir units and buffer units, and evaluate these units in each well. The Mauddud was divided into five units, two of them were considered good reservoirs having good petrophysical properties (high porosity, Low water saturation, and low shale volume). The other three are not reservoirs because of poor petrophysical properties.
CdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.
The Sr doped La1Ba1-xSrx Ca2Cu4O8.5+δ samples with 0 ≤ x ≤ 0.3 had been prepared using the solid state reaction. The samples were claimed at 800°C for 3hr, palletized and sintered at 860°C for 20hr in air . Dielectric constant and loss by means of capacitance have been investigated with frequencies in the range of 1kHZ to 1MHZ for our samples at room temperature. Also, Shore hardness has been measured. The dielectric constant and loss decrease slightly with the increase of frequency for all compounds. Additionally, the partial substitution of Sr+2 into Ba+2 sites never have effect on the dielectric properties. X-ray diffraction (XRD) analysis showed a tetragonal structure and the
... Show MoreAhdeb oil field is located in the central block of Mesopotamia plain in Iraq. It has three domes AD-1, AD-2, and AD-4.The current study represents characterization of carbonate Mishrif reservoir (Cenomanian-Early Turonian) in three wells (AD-A,AD-B,AD-C) at southern dome of Ahdeb oil field. Petrophysical properties were calculated using available well logs data such as neutron, density, sonic, gamma ray, resistivity and self-potential logs. These logs are digitized and then environmental corrections and interpretations were carried out using Techlog software. Petrophysical parameters such as shale volume, porosity, water saturation, hydrocarbon saturation, bulk water volume, etc. were determined and interpreted and illustrate
... Show MoreTiO2 thin films were deposited by reactive d.c magnetron sputtering method on a glass substrate with various ratio of gas flow (Oxygen /Argon) (50/50, 100/50 and 150/50) at substrate temperature 573K. It can be observe that the optical energy gap of TiO2 thin films dependent on the ratio of gas flow (oxygen/argon), it varies between (3.45eV-3.57eV) also it is seen that the optical constants (α, n, K, εr and εi ) has been varied with the change of the ratio of gas flow (Oxygen /Argon).