Roller Compacted Concrete (RCC) is a technology characterized mainly by the use of rollers for compaction; this technology achieves significant time and cost savings in the construction of dams and roads. The primary scope of this research is to study the durability and performance of roller compacted concrete that was constructed in the laboratory using roller compactor manufactured in local market. A total of (60) slab specimen of (38×38×10) cm was constructed using the roller device, cured for 28 days, then 180 sawed cubes and 180 beams are obtained from RCC slab. Then, the specimens are subjected to 60 cycles of freezing and thawing, sulfate attack test and wetting and drying. The degree of effect of the type of coarse aggregate (crushed and rounded), cement type (OPC and SRPC) and cement content on the durability of RCC were investigated. The results indicated that RCC that contain SRPC has beneficial effects on properties of RCC as compared to RCC that contain OPC after durability testing. Based on the testing results, it was concluded that the resistance of RCC specimens to freezing and thawing, wetting and drying and sulfate attack test increase as cement content increase. The results also indicate that using RCC that contain crushed aggregate has a positive effect on the overall properties of RCC, as compared with RCC that contain rounded aggregate after durability testing.
To achieve sustainability in the field of civil engineering, there has become a great interest in developing reactive powder concrete RPC through the use of environmentally friendly materials to reduce the release of CO2 gas produced from cement factories as well as contribute to the recycling of industrial wastes that have a great impact on environmental pollution.
In this study, reactive powder concrete was prepared using total binder content of 800 kg/m3, water to binder ratio (0.275), and micro steel fibers 1% by volume of concrete. The experimental program included replacing fly ash with (8, 12, 16) % by cement weight to find the optimal ratio, which achieved the best mechanical proper
... Show MoreThe conception and experimental assessment of a removable friction-based shear connector (FBSC) for precast steel-concrete composite bridges is presented. The FBSC uses pre-tensioned high-strength steel bolts that pass through countersunk holes drilled on the top flange of the steel beam. Pre-tensioning of the bolts provides the FBSC with significant frictional resistance that essentially prevents relative slip displacement of the concrete slab with respect to the steel beam under service loading. The countersunk holes are grouted to prevent sudden slip of the FBSC when friction resistance is exceeded. Moreover, the FBSC promotes accelerated bridge construction by fully exploiting prefabrication, does not raise issues relevant to precast co
... Show MoreThis paper presents the application of nonlinear finite element models in the analysis of dappedends pre-stressed reinforced concrete girders under static loading by using ANSYS software. The girder dimensions are (4.90 m span, 0.40 m depth, 0.20 m width, 0.20 m nib depth, and 0.10 m nib length) and the parameters considered in this research are the pre-stress effect, and strand profile (straight and draped). The numerical results are compared with the experimental results of the same girders. The comparisons are carried out in terms of initial prestress effect, load- deflection curve, and failure load. Good agreement was obtained between the analytical and experimental results. Even that, the numerical model was stiffer than the experiment
... Show MoreThe present work is concerned with the investigation of the behavior and ultimate capacity of axially loaded reinforced concrete columns in presence of transverse openings under axial load plus uniaxial bending. The experimental program includes testing of twenty reinforced concrete columns (150 × 150 × 700 mm) under concentric and eccentric load. Parameters considered include opening size, load eccentricity and influence of the direction of load eccentricity with respect to the longitudinal axis of the opening. Experimental results are discussed based on load – lateral mid height deflection curves, load – longitudinal shortening behavior, ultimate load and failure modes. It is found that when the direction of load
... Show MoreThis article investigates the development of the following material properties of concrete with time: compressive strength, tensile strength, modulus of elasticity, and fracture energy. These properties were determined at seven different hydration ages (18 h, 30 h, 48 h, 72 h, 7 days, 14 days, 28 days) for four pure cement concrete mixes totaling 336 specimens tested throughout the study. Experimental data obtained were used to assess the relationship of the above properties with the concrete compressive strength and how these relationships are affected with age. Further, this study investigates prediction models available in literature and recommendations are made for models that are found suitable for application to early age conc
... Show MoreThe adopted accelerated curing methods in the experimental work are 55ºC and 82ºC according to British standard methods. The concrete mix with the characteristics compressive strength of 35MPa is design according to the ACI 211.1, the mix proportion is (1:2.65:3.82) for cement, fine and coarse aggregate, respectively. The concrete reinforced with different volume fraction (0.25, 0.5 and 0.75)% of glass, carbon and polypropylene fibers. The experimental results showed that the accelerated curing method using 82ºC gives a compressive strength higher than 55ºC method for all concrete mixes. In addition, the fiber reinforced concrete with 0.75% gives the maximum compressive strength, flexural and splitting tensile strength for all types of
... Show MoreThis paper presents the application of nonlinear finite element models in the analysis of dapped-ends pre-stressed reinforced concrete girders under static loading by using ANSYS software. The girder dimensions are (4.90 m span, 0.40 m depth, 0.20 m width, 0.20 m nib depth, and 0.10 m nib length) and the parameters considered in this research are the pre-stress effect, and strand profile (straight and draped).
The numerical results are compared with the experimental results of the same girders. The comparisons are carried out in terms of initial prestress effect, load- deflection curve, and failure load. Good agreement was obtained between the analytical and experimental results. Even that, the
... Show MoreThe present investigation focuses on the response of simply supported reinforced concrete rectangular-section beams with multiple openings of different sizes, numbers, and geometrical configurations. The advantages of the reinforcement concrete beams with multiple opening are mainly, practical benefit including decreasing the floor heights due to passage of the utilities through the beam rather than the passage beneath it, and constructional benefit that includes the reduction of the self-weight of structure resulting due to the reduction of the dead load that achieves economic design. To optimize beam self-weight with its ultimate resistance capacity, ten reinforced concrete beams having a length, width, and depth of 2700, 100, and
... Show MoreUndoubtedly, rutting in asphalt concrete pavement is considered a major dilemma in terms of pavement performance and safety faced by road users as well as the road authorities. Rutting is a bowl-shaped depression in the wheel paths that develop gradually with the increasing number of load applications. Heavy axle loadings besides the high pavement summer temperature enhance the problem of rutting. According to the AASHTO design equation for flexible pavements, a 1.1 in rut depth will reduce the present serviceability index of relatively new pavement, having no other distress, from 4.2 to 2.5. With this amount of drop in serviceability, the entire life of the pavement in effect has been lost. Therefore, it is crucial to look at the mechani
... Show MoreSix proposed simply supported high strength-steel fiber reinforced concrete (HS-SFRC) beams reinforced with FRP (fiber reinforced polymer) rebars were numerically tested by finite element method using ABAQUS software to investigate their behavior under the flexural failure. The beams were divided into two groups depending on their cross sectional shape. Group A consisted of four trapezoidal beams with dimensions of (height 200 mm, top width 250 mm, and bottom width 125 mm), while group B consisted of two rectangular beams with dimensions of (125 ×200) mm. All specimens have same total length of 1500 mm, and they were also considered to be made of same high strength concrete designed material with 1% volume fraction of steel fiber.
... Show More