Stripping is one of the major distresses within asphalt concrete pavements caused due to penetration of water within the interface of asphalt-aggregate matrix. In this work, one grade of asphalt cement (40-50) was mixed with variable percentages of three types of additives (fly ash, fumed silica, and phosphogypsum) to obtained an modified asphalt cement to resist the effect of stripping phenomena .The specimens have been tested for physical properties according to AASHTO. The surface free energy has been measured by using two methods namely, the wilhelmy technique and the Sessile drop method according to NCHRP-104
procedures. Samples of asphalt concrete using different asphalt cement and modified asphalt cement percentages(4.1,4.6 and 5.6) were prepared and tested for stripping phenomena by using Marshall Immersion method (The index of retained stability test(I.R.S) ≥75 %. When using Sessile drop method the value of surface free energy of asphalt cement grade (40-50) was about 8.8 ergs/cm2
, while when using Wilhelmy technique the value of surface free energy of asphalt cement was 30.71 ergs/cm2. Finally, a mathematical relationship was obtained by using (SPSS) Software between the strippingasphalt concrete using conditioned and unconditioned specimens data (I.R.S) %, the contact angle, the total surface free energy for asphalt cement and modified asphalt cement with fume silica.
Abstract: The use of indirect, all-ceramic restorations has grown in popularity among dentists. Studies have demonstrated that for indirect ceramic restorations to be effective over time, cement and ceramic must be bonded in a stable manner. Chemical, mechanical, and laser irradiation are among the methods used to precondition ceramic surfaces in order to increase bond strength.The objective of the study: This study was performed to investigate the roughness values and surface topography of lithium disilicate glass-ceramic treated with conventional methods and different Er,Cr:YSGG, and fractional CO2 laser conditioning parameters.Material and methods:<
... Show MoreThe increase in the number of trucks and other heavy vehicles in Iraqi highways lead to cracking and deteriorations in the flexible highway. The use of polymermodified asphalt may solve this problem to match the required performance standards. This study investigates the effects of styrene-butadiene-styrene (SBS) polymer on the performance behaviour of Iraqi bitumen binder. The characteristics of bitumen binder were analysed to observe the compatibility of bitumen with SBS polymer. The bitumen binder was mixed with three different contents of SBS (4%, 4.5%, and 5%) by weight of asphalt cement. Viscosity tests were conducted on the SBS polymer-modified asphalt at 135 oC and 165 oC in addition to conventional binder tests. The prepar
... Show MoreThe study presents the test results of stabilizing gypseous soil embankment obtained from
Al- Faluja university Campus at Al-Ramady province. The laboratory investigation was divided
into three phases, The physical and chemical properties, the optimum liquid asphalt (emulsion)
requirements (which are manufactured in Iraq) were determined by using one dimensional
unconfined compression strength test.in the first phase , The optimum fluid content was 11%
(6% of emulsion with 5% water content).. At phase two, the effect of Aeration technique was
investigated using both direct shear and permeability test. At phase three for the case of static
load , the pure soil embankment model under dry test condition was investigated
This paper describes a research effort that aims of developing solar models for housing suitable for the Arabian region since the Arabian Peninsula is excelled with very high levels of solar radiation.
The current paper is focused on achieving energy efficiency through utilizing solar energy and conserving energy. This task can be accomplished by implementation the major elements related to energy efficiency in housing design , such as embark on an optimum photovoltaic system orientation to maximize seize solar energy and produce solar electricity. All the precautions were taken to minimizing the consumption of solar energy for providing the suitable air-condition to the inhibitor of the solar house in addition to use of energy effici
The Ground Penetrating Radar (GPR) is frequently used in pavement engineering
for road pavement inspection. The main objective of this work is to validate
nondestructive, quick and powerful measurements using GPR for assessment of subgrade
and asphalt /concrete conditions. In the present study, two different antennas
(250, 500 MHz) were used. The case studies are presented was carried in University
of Baghdad over about 100m of paved road. After data acquisition and radar grams
collection, they have been processed using RadExplorer V1.4 software
implementing different filters with the most effective ones (time zero adjustment and
DC removal) in addition to other interpretation tool parameters.
The interpretatio
A novel encapsulated deep eutectic solvent (DES) was introduced for biodiesel production via a two-step process. The DES was encapsulated in medical capsules and were used to reduce the free fatty acid (FFA) content of acidic crude palm oil (ACPO) to the minimum acceptable level (< 1%). The DES was synthesized from methyltriphenylphosphonium bromide (MTPB) and p-toluenesulfonic acid (PTSA). The effects pertaining to different operating conditions such as capsule dosage, reaction time, molar ratio, and reaction temperature were optimized. The FFA content of ACPO was reduced from existing 9.61% to less than 1% under optimum operating conditions. This indicated that encapsulated MTPB-DES performed high catalytic activity in FFA esterificatio
... Show MoreThe aim of this research work is to study the effect of stabilizing gypseous soil, which covers
vast areas in the middle, west and south parts of Iraq, using liquid asphalt on its strength properties
to be used as a base course layer replacing the traditional materials of coarse aggregate and broken
stones which are scarce at economical prices and hauling distances.
Gypseous soil brought from Al-Ramadi City, west of Iraq, with gypsum content of 66.65%,
medium curing cutback asphalt (MC-30), and hydrated lime are used in this study.
The conducted tests on untreated and treated gypseous soil with different percentages of medium
curing cutback asphalt (MC-30), water, and lime were: unconfined compression strength, and o
The Asphalt cement is produced as a by-product from the oil industry; the asphalt must practice further processing to control the percentage of its different ingredients so that it will be suitable for paving process. The objective of this work is to prepare different types of modified Asphalt cement using locally available additives, and subjecting the prepared modified Asphalt cement to testing procedures usually adopted for Asphalt cement, and compare the test results with the specification requirements for the modified Asphalt cement to fulfill the paving process requirements. An attempt was made to prepare the modified Asphalt cement for pavement construction in the laboratory by digesting each of the two penetration grade Asphalt c
... Show MoreThe world's renewable energy sources have taken on great importance, for its cleanness and its environmental effects as well as being a renewable source, Increased demand for fossil energy sources is also causing global warming and climate change. Iraq is an appropriate area for renewable energy This study shows that renewable alternative energy has not been used sufficiently enough at present. But this energy can play an important role in the future of renewable energy in Iraq. This research aims to study the renewable energy in Iraq (solar energy) and it is appropriate to develop this alternative energy for crude oil, which is characterized by the use of the most appropriate and less economical and more environmentally friendly. Solar
... Show MoreThis research aimed to predict the permanent deformation (rutting) in conventional and rubberized asphalt mixes under repeated load conditions using the Finite Element Method (FEM). A three-dimensional (3D) model was developed to simulate the Wheel Track Testing (WTT) loading. The study was conducted using the Abaqus/Standard finite element software. The pavement slab was simulated using a nonlinear creep (time-hardening) model at 40°C. The responses of the viscoplastic model under the influence of the trapezoidal amplitude of moving wheel loadings were determined for different speeds and numbers of cycles. The results indicated that a wheel speed increase from 0.5Km/h to 1.0Km/h decreased the rut depth by about 22% and 24% in conv
... Show More