Finite element modeling of transient temperature distribution is used to understand physical phenomena occurring during the dwell (penetration) phase and moving of welding tool in friction stir welding (FSW) of 5mm plate made of 7020-T53 aluminum alloy at 1400rpm and 40mm/min.
Thermocouples are used in locations near to the pin and under shoulder surface to study the welding tool penetration in the workpiece in advance and retreate sides along welding line in three positions (penetrate (start welding) , mid, pullout (end welding)).
Numerical results of ANSYS 12.0 package are compared to experimental data including axial load measurements at different tool rotational speeds (710rpm.900rpm.1120rpm and 1400rpm) Based on the experimental records of transient temperature at several specific locations of thermocouples during the friction stir welding process the temperatures are higher on the advancing side (629.2 oK) than the retreating side (605 oK) along welding line and temperature in the top of workpiece under tool shoulder is higher(645 oK) than bottom (635.79oK). The results of the simulation are in good agreement with that of experimental results. The peak temperature obtained was 70% of the melting point of parent metal.
Physical and chemical adsorption analyses were carried out by nitrogen gas using ASTM apparatus at 77 K and hydrogen gas using volumetric apparatus at room temperature respectively. These analyses were used for determination the effect of coke deposition and poisoning metal on surface area, pore size distribution and metal surface area of fresh and spent hydrodesulphurization catalyst Co-MoAl2O3 .Samples of catalyst (fresh and spent) used in this study are taken from AL-Dura refinery. The results of physical adsorption shows that surface area of spent catalyst reduced to third compare with fresh catalyst and these catalysts exhibit behavior of type four according to BET classification ,so, the pores of these samples are cylindrical, and the
... Show MoreThe present work presents a new experimental study of the enhancement of turbulent
convection heat transfer inside tubes for combined thermal and hydrodynamic entry length of one
popular “turbulator” (twisted tape with width slightly less than internal tube diameter) inserted for
fire tube boilers. Cylindrical combustion chamber was used to burn (1.6 to 7kg/h) fuel oil #2 to
deliver hot gases with ranges of Reynolds number (10500 to 21700), and (11400 to 24150) for both
empty and inserted tube respectively.A uniform wall temperature technique was used by keeping
approximately constant water temperature difference (25ºC) between inlet and exit cooling water in
parallel flow shell and tube heat exchanger. The test
Metal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spe
... Show MoreExponential distribution is one of most common distributions in studies and scientific researches with wide application in the fields of reliability, engineering and in analyzing survival function therefore the researcher has carried on extended studies in the characteristics of this distribution.
In this research, estimation of survival function for truncated exponential distribution in the maximum likelihood methods and Bayes first and second method, least square method and Jackknife dependent in the first place on the maximum likelihood method, then on Bayes first method then comparing then using simulation, thus to accomplish this task, different size samples have been adopted by the searcher us
... Show MoreIn this paper, suggested formula as well a conventional method for estimating the twoparameters (shape and scale) of the Generalized Rayleigh Distribution was proposed. For different sample sizes (small, medium, and large) and assumed several contrasts for the two parameters a percentile estimator was been used. Mean Square Error was implemented as an indicator of performance and comparisons of the performance have been carried out through data analysis and computer simulation between the suggested formulas versus the studied formula according to the applied indicator. It was observed from the results that the suggested method which was performed for the first time (as far as we know), had highly advantage than t
... Show MoreThis paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).
This investigation proposed an identification system of offline signature by utilizing rotation compensation depending on the features that were saved in the database. The proposed system contains five principle stages, they are: (1) data acquisition, (2) signature data file loading, (3) signature preprocessing, (4) feature extraction, and (5) feature matching. The feature extraction includes determination of the center point coordinates, and the angle for rotation compensation (θ), implementation of rotation compensation, determination of discriminating features and statistical condition. During this work seven essential collections of features are utilized to acquire the characteristics: (i) density (D), (ii) average (A), (iii) s
... Show More