The removal of boron from aqueous solution was carried out by electrocoagulation (EC) using magnesium electrodes as anode and stainless steel electrodes as cathode. Several operating parameters on the removal efficiency of boron were investigated, such as initial pH, current density, initial boron ion concentration, NaCl concentration, spacing between electrodes, electrode material, and presence of carbonate concentration. The optimum removal efficiency of 91. 5 % was achieved at a current density of 3 mA/cm² and pH = 7 using (Mg/St. St. ) electrodes, within 45 min of operating time. The concentration of NaCl was o. 1 g/l with a 0.5cm spacing between the electrodes. First and second order rate equation were applied to study adsorption kinetics. The adsorption process
follows second order kinetic model with good correlation. The energy consumption was evaluated for the optimum operating conditions. It was in the range of 1.296 to 1.944 Kwh/m3 . The overall expected increase in the operating cost of water treatment using membrane desalination facility (for example) will be about 20%.
Twenty purified isolates were obtained by using different soil sources, only twelve isolates belonging to Aspergillus genera depending on cultural and morphological characterization. The isolates were used as alkaline protease producer. The highest proteolytic, enzymatic activity (95.83U/ml) was obtained from
Some mechanical and thermal properties of mullite samples prepared by mixing different phases of alumina and silica powders have been studied according to ASTM methods the cold crushing strength of the sintcred bodies.With different porosity, at room temperature was in the range(18-54)Mpa
This paper experimentally investigates the heating process of a hot water supply using a neural network implementation of a self-tuning PID controller on a microcontroller system. The Particle Swarm Optimization (PSO) algorithm employed in system tuning proved very effective, as it is simple and fast optimization algorithm. The PSO method for the PID parameters is executed on the Matlab platform in order to put these parameters in the real-time digital PID controller, which was experimented with in a pilot study on a microcontroller platform. Instead of the traditional phase angle power control (PAPC) method, the Cycle by Cycle Power Control (CBCPC) method is implemented because it yields better power factor and eliminates harmonics
... Show MoreManganese dioxide rotating cylinder electrode prepared by anodic deposition on a graphite substrate using MnSO4 solution in the presence of 0.918 M of H2SO4. The influence of different operational parameters (MnSO4 concentration, current density, time, and rotation speed) on the structure, and morphology of MnO2 deposit film was examined widely. The structure and crystal size determined by X-ray diffraction (XRD), the morphology examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The γ-MnO2 obtained as the main product of the deposition process. It found that the four parameters have a significant influence on the structure, morphology, and roughness of the prepared MnO2 deposit. The crystal size in
... Show MoreThe size and the concentration of the gold nanoparticles (GNPs)
synthesized in double distilled deionized water (DDDW) have been
found to be affected by the laser energy and the number of pulses.
The absorption spectra of the nanoparticles DDDW, and the
surface plasmon resonance (SPR) peaks were measured, and found to
be located between (509 and 524)nm using the UV- Vis
spectrophotometer. SPR calculations, images of transmission
electron microscope, and dynamic light scattering (DLS) method
were used to determine the size of GNPs, which found to be ranged
between (3.5 and 27) nm. The concentrations of GNPs in colloidal
solutions found to be ranged between (37 and 142) ppm, and
measured by atomic absorptio
Formation of Au–Ag–Cu ternary alloy nanoparticles (NPs) is of particular interest because this trimetallic system have miscible (Au–Ag and Au–Cu) and immiscible (Ag– Cu) system. So there is a possibility of phase segregation in this ternary system. At this challenge it was present attempts synthetic technique to generate such trimetallic alloy nanoparticles by exploding wire technique. The importance of preparing nanoparticles alloys in distilled water and in this technique makes the possibility of obtaining nanoparticles free of any additional chemical substance and makes it possible to be used in the treatment of cancer or diseases resulting from bacterial or virus with least toxic. In this work, three metals alloys Au-Ag-Cu
... Show MoreIn this study, uranium concentrations were evaluated and the annual effective dose was calculated from the consumption of bottled water and tap water used for drinking in Babylon, middle Iraq. Uranium isotopes (238U, 234U, 235U) were determined for all samples collected using the phosphorylation analyzer technique represented device (KPA). Forty-four samples were collected to cover almost all districts and regions of Babylon. Thirty tap water samples were collected from residential neighborhoods, with 14 samples from local brand bottled water. The results show that the uranium concentrations in the tap water samples ranged from 1.66 μg.L-1 to 2.64 μg.L-1, with an avera
... Show MoreThe lead has adverse effects in contamination the aquatic environment, for this reason, a laboratory simulation was conducted using kaolinite collected from the Ga’ara Formation at western Iraq to be considered as a natural sorbent material that can be addressed Pb2+ from the aqueous environments. The Energy-Dispersive X-ray Spectroscopy and atomic absorption spectroscopy clarifying very fine grains and pure phase with a very little quantity of quartz and has a number of active sites for adsorption. The sorption of kaolinite for the Pb2+ has been carefully tested by several designed laboratory experiments. Five lead solutions of different concentrations (25, 50, 75, 100 and 125 ppm) were tested under different values of pH (1.3-9)
... Show More