The removal of boron from aqueous solution was carried out by electrocoagulation (EC) using magnesium electrodes as anode and stainless steel electrodes as cathode. Several operating parameters on the removal efficiency of boron were investigated, such as initial pH, current density, initial boron ion concentration, NaCl concentration, spacing between electrodes, electrode material, and presence of carbonate concentration. The optimum removal efficiency of 91. 5 % was achieved at a current density of 3 mA/cm² and pH = 7 using (Mg/St. St. ) electrodes, within 45 min of operating time. The concentration of NaCl was o. 1 g/l with a 0.5cm spacing between the electrodes. First and second order rate equation were applied to study adsorption kinetics. The adsorption process
follows second order kinetic model with good correlation. The energy consumption was evaluated for the optimum operating conditions. It was in the range of 1.296 to 1.944 Kwh/m3 . The overall expected increase in the operating cost of water treatment using membrane desalination facility (for example) will be about 20%.
The Synthesis of yttrium oxide nanoparticles have been achieved via calcination
of yttrium hydroxide produced from the reaction of aqueous solutions of yttrium
nitrate and sodium hydroxide at pH = 13 using hydrothermal and hydrothermal
microwave methods. Effect of heat treatment of the resulted yttrium hydroxide
powder on the morphology and crystallinity of the resulting oxide was studied at
calcination 500, 700 and 1000°C to obtain. The resulted products were
characterized by means of X-ray diffraction (XRD), scanning electron microscope
(SEM), atomic force microscope (AFM), Fourier transform infrared spectrometer
(FTIR) and thermal analyses (TG).
Purpose Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal. Materials and methods Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied. Results The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that
... Show MorePlant tissue culture considers a benefit biotechnological technique for scientific research especially the production of undifferentiation callus cells and regeneration through suspension or static media. The seedlings of Peganum harmala was used as a source to produce callus mass in vitro in static media through different tissue culture media supplemented by varying combinations of plant growth regulators (PGR). The result illustrates that 2 mg/l of Kinitine with 0.5 mg/l of 2, 4-D was efficient to stimulate callus induction with percent 100% in stem and root of P. harmala and this combination gave a high fresh weight, 1954 mg in root and 1170
mg in stem and high dry weight in root and stem was 74.6
This study reports on natural convection heat transfer in a square enclosure of length (L=20 cm) with a saturated porous medium (solid glass beads) having same fluid (air) at lower horizontal layer and free air fill in the rest of the cavity's space. The experimental work has been performed under the effects of heating from bottom by constant heat flux q=150,300,450,600 W/m2 for four porous layers thickness Hp (2.5,5,7.5,1) cm and three heaters length δ(20,14,7) cm. The top enclosure wall was good insulated and the two side walls were symmetrically cooled at constant temperature. Four layers of porous media with small porosity, Rayleigh number range (60.354 - 241.41) and (Da) 3.025x10-8 has been investigated. The obtained data of temperatu
... Show MoreIn this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
In this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
Pseudomonas putidaPST-1 isolate isolated from soil of plant root was used for high production of indole acetic acid. Indole acetic acid (IAA) production is a major property of rhizosphere bacteria that stimulate and facilitate plant growth. Optimization of indole acetic acid production was carried out at different cultural conditions of pH temperature, incubation period, and the amount of inoculum of bacteria. The best chemical medium for high IAA production (82 Mg/ml) was Luria-Bertani broth medium consisted of 1.2gm tryptophan and 10gm peptone in their components, while the cheese whey medium was the best natural medium for IAA production was (66 Mg/ml). IAA production byPseudomonas putida PST-1 was optimized by studying some factors t
... Show MoreThe core objective of this study was to investigate the physicochemical characteristics and fatty acid composition of the oils of sunflower, olive, virgin coconut and ginger oils, as well as the separation of their unsaturated fatty acids. The data indicated a significant variation in physicochemical properties (acid, saponification, ester, and iodine values) among oils. Transesterification process was carried out at a molar ratio of 1:7:0.1 of oil: methanol: KOH. Fatty acid methyl esters of oils were analyzed by infrared (IR) and gas chromatography–mass (GC-MS) spectrometry. Twelve fatty acids were identified, where the major fatty acid of olive oil was found to be oleic acid (89%), whereas those of sunflower and ging
... Show MoreThe present work investigated the effect of distance from target surface on the parameters of lead plasma excited by 1064nm Q-switched Nd:YAG laser. The excitation was conducted in air, at atmospheric pressure, with pulse length of 5 ns, and at different pulse laser energies. Electron temperature was calculated by Boltzmann plot method based on the PbI emission spectral lines (369.03 nm, 416.98 nm, 523.48, and 561.94 nm). The PbI lines were recorded at different distances from the target surface at laser pulse energies of 260 and 280 mJ. The emission intensity of plasma increased with increasing the lens-to-target distance. The results also detected an increase in electron temperature with increasing the di
... Show More