Preferred Language
Articles
/
joe-2203
Effect of Transverse Base Width Restraint on the Cracking Behavior of Massive Concrete
...Show More Authors

The effect of considering the third dimension in mass concrete members on its cracking behavior is investigated in this study. The investigation includes thermal and structural analyses of mass concrete structures. From thermal analysis, the actual temperature distribution throughout the mass concrete body was obtained due to the generation of heat as a result of cement hydration in
addition to the ambient circumstances. This was performed via solving the differential equations of heat conduction and convection using the finite element method. The finite element method was also implemented in the structural analysis adopting the concept of initial strain problem. Drying shrinkage volume changes were calculated using the procedure suggested by ACI Committee 209 and inverted to equivalent temperature differences to be added algebraically to the temperature differences obtained from thermal analysis. Willam-Warnke model with five strength parameters is used in modeling of concrete material in which cracking and crushing behavior of concrete can be included. The ANSYS program was employed in a modified manner to perform the above analyses.
A thick concrete slab of 1.5m in thickness and 10m in length was analyzed for different widths 2, 4, 8, and 10m to produce different aspect ratios (B/L) of 0.2, 0.4, 0.8, and 1.0 respectively. The results of the analyses show an increase in cracking tendency of mass concrete member as the aspect ratio of the same member is increased due to the effect of transverse base restraint. Accordingly, such effect cannot be ignored in the analysis of base restrained mass concrete structures subjected to temperature and drying shrinkage volume changes.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jun 28 2024
Journal Name
Curr Pharm Des
Synthesis, Characterization, and Antimicrobial Evaluation of Schiff base-mixed Ligand Complexes with Divalent Metal Ions Derived from Amoxicillin and Vanillin/Nicotinamide
...Show More Authors

Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal For Applied Sciences
Examining Metal Complexes Formed from New Schiff Base ‎Ligand ‎Derived from Benzene Carbaldehyde: Evaluation of Anti-‎biofilm and ‎Anti-bacterial Properties
...Show More Authors

One of the most difficult tasks in modern medical societies is the process of identifying a cure for many infectious diseases caused by drug-resistant microbes. Therefore, it has become necessary to discover new compounds that work in this regard. The currently prepared Schiff base, derived from thiazole, has a biological activity against bacteria and biofilms and its activity increases when it is associated with copper, zinc and platinum ions and forms metal complexes. This study highlights the synthesis and evaluation of novel biological compounds as inhibitors of bacterial growth and biofilms. A three newly complexes are resulting from the reaction of a new Schiff base ligand (LC) with metal ions (Zn, Cu, Pt). The new ligand (LC)

... Show More
View Publication
Crossref
Publication Date
Sun Jun 05 2022
Journal Name
Egyptian Journal Of Chemistry
Synthesis, Characterization, and Biological Activity of New Metal Ions Complexes with Schiff Base Derived from 2-Acetylthiophene and Isatin-3-Hydrazone
...Show More Authors

This study describes the preparation of a new bidentate Schiff base derived from the condensation of Isatin-3-hydrazone with 2-acetylthiophene and the preparation of new series of complexes with a good yield. The prepared ligand was characterized by IR, UV-Vis, C.H.N.S elemental analysis, 1H and 13C NMR, LC-Mass spectroscopy, and physical measurements. Its complexes were analyzed by C.H.N.S elemental analyses, UV-Vis., FTIR, NMR, LC-Mass Spectra, atomic absorption spectroscopy, magnetic susceptibility, and conductivity measurements The results from spectroscopy and measurement studies showed that the ligand coordinated to the metal ion as a bidentate ligand via oxygen and nitrogen, forming an octahedral geometry around it. In vitro antimicr

... Show More
Publication Date
Tue Jun 27 2023
Journal Name
Chemphyschem
Predicting a New Δ‐Proton Sponge‐Base of 4,12‐Dihydrogen‐4,8,12‐triazatriangulene through Proton Affinity, Aromatic Stabilization Energy, and Aromatic Magnetism
...Show More Authors
Abstract<p>Herein, we report designing a new Δ (delta‐shaped) proton sponge base of 4,12‐dihydrogen‐4,8,12‐triazatriangulene (compound <bold>1</bold>) and calculating its proton affinity (<italic>PA</italic>), aromatic stabilization, natural bond orbital (NBO), electron density <italic>ρ</italic>(r), Laplacian of electron density ∇<sup>2</sup><italic>ρ</italic>(r), (2D‐3D) multidimensional <italic>off</italic>‐nucleus magnetic shielding (<italic>σ</italic><sub>zz</sub>(r) and <italic>σ</italic><sub>iso</sub>(r)), and scanning nucleus‐independent chemical shift (NICS<sub>zz</sub> and</p> ... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Case Studies In Construction Materials
Push-out test of waste sawdust-based steel-concrete – Steel composite sections: Experimental and environmental study
...Show More Authors

View Publication
Crossref (5)
Crossref
Publication Date
Thu Apr 27 2023
Journal Name
Civileng
Numerical Modeling and Analysis of Strengthened Steel–Concrete Composite Beams in Sagging and Hogging Moment Regions
...Show More Authors

Strengthening of composite beams is highly needed to upgrade the capacities of existing beams. The strengthening methods can be classified as active or passive techniques. Therefore, the main purpose of this study is to provide detailed FE simulations for strengthened and unstrengthened steel–concrete composite beams at the sagging and hogging moment regions with and without profiled steel sheeting. The developed models were verified against experimental results from the literature. The verified models were used to present comparisons between the effect of using external post-tensioning and CFRP laminates as strengthening techniques. Applying external post-tensioning at the sagging moment regions is more effective because of the e

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Sep 02 2025
Journal Name
Journal Of Composites Science
Numerical Evaluation of Embedded I-Section Strengthening in Axially Loaded Composite Concrete-Filled Stainless Steel Tubes
...Show More Authors

To enhance the structural performance of concrete-filled steel tube (CFST) columns, various strengthening techniques have been proposed, including the use of internal steel stiffeners, external wrapping with carbon fiber-reinforced polymer (CFRP) sheets, and embedded steel elements. However, the behavior of concrete-filled stainless-steel tube (CFSST) columns remains insufficiently explored. This study numerically investigates the axial performance of square CFSST columns internally strengthened with embedded I-section steel profiles under biaxial eccentric loading. Finite element (FE) simulations were conducted using ABAQUS v. 6.2, and the developed models were validated against experimental results from the literature. A comprehen

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Wed Mar 03 2021
Journal Name
Innovative Infrastructure Solutions
Experimental investigation of a new sustainable approach for recycling waste styrofoam food containers in lightweight concrete
...Show More Authors

View Publication
Scopus (9)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Apr 19 2021
Journal Name
Bridge Maintenance, Safety, Management, Life-cycle Sustainability And Innovations
Flexure strengthening of concrete bridge girders with concavely curved soffit using near-surface-mounted CFRP bars
...Show More Authors

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Dec 09 2020
Journal Name
Civil Engineering Journal
Torsional Strengthening of Reinforced Concrete Beams with Externally-Bonded Fibre Reinforced Polymer: An Energy Absorption Evaluation
...Show More Authors

The impacts of numerous important factors on the Energy Absorption (EA) of torsional Reinforced Concrete (RC) beams strengthened with external FRP is the main purpose and innovation of the current research. A total of 81 datasets were collected from previous studies, focused on the investigation of EA behaviour. The impact of nine different parameters on the Torsional EA of RC-beams was examined and evaluated, namely the concrete compressive strength (f’c), steel yield strength (fy), FRP thickness (tFRP), width-to-depth of the beam section (b/h), horizontal (ρh) and vertical (ρv) steel ratio, angle of twist (θu), ultimate torque (Tu), and FRP ultimate strength (fy-FRP). For the evaluation of the energy absorption capacity at di

... Show More
View Publication
Scopus (16)
Crossref (17)
Scopus Clarivate Crossref