The effect of considering the third dimension in mass concrete members on its cracking behavior is investigated in this study. The investigation includes thermal and structural analyses of mass concrete structures. From thermal analysis, the actual temperature distribution throughout the mass concrete body was obtained due to the generation of heat as a result of cement hydration in
addition to the ambient circumstances. This was performed via solving the differential equations of heat conduction and convection using the finite element method. The finite element method was also implemented in the structural analysis adopting the concept of initial strain problem. Drying shrinkage volume changes were calculated using the procedure suggested by ACI Committee 209 and inverted to equivalent temperature differences to be added algebraically to the temperature differences obtained from thermal analysis. Willam-Warnke model with five strength parameters is used in modeling of concrete material in which cracking and crushing behavior of concrete can be included. The ANSYS program was employed in a modified manner to perform the above analyses.
A thick concrete slab of 1.5m in thickness and 10m in length was analyzed for different widths 2, 4, 8, and 10m to produce different aspect ratios (B/L) of 0.2, 0.4, 0.8, and 1.0 respectively. The results of the analyses show an increase in cracking tendency of mass concrete member as the aspect ratio of the same member is increased due to the effect of transverse base restraint. Accordingly, such effect cannot be ignored in the analysis of base restrained mass concrete structures subjected to temperature and drying shrinkage volume changes.
Kaolin ceramic compacts sintered at various temperatures are investigated to correlate their microstructure with their acoustic parameters. Pulse velocity , attenuation coefficient, and quality factor values are ducts from ultrasonic attenuation measurements, moreover, the dynamical mechanics parameters( Young and shear modules) exhibited an explicit relationship with the acoustic quality factor.inturn are related to the microstructure which is heavily affected by the sintering mechanism.
This study conducted an analytical investigation on the behavior of concrete beams with openings reinforced by glass-fiber-reinforced polymer (GFRP) bars. In this study, five proposed beams reinforced by GFRP bars as flexural and shear reinforcement with openings were numerically examined. The variables were the opening orientation (vertical and horizontal) and the number of openings. These openings were located within the flexural zone of the proposed beams. The result shows that the vertical openings had a significant effect over the horizontal openings on reducing the ultimate load and increasing the mid-span deflection compared with the control beam. Moreover, the results showed t
Background: Failure of resin bases were a major disadvantage recorded in the constructed dentures. Reinforcements of the repair joint with nano fillers represent an attempt to enhance the strength and durability. The purpose of the research was to estimate the influence of nano fillers reinforcement with (ZrO2 and Al2O3) on impact and transverse strength of denture bases repaired with either cold or hot processing acrylic resin. Materials and methods: A hundred and forty (140) samples were processed with hot cured resin and organized in subgroups depending on the repair materials and condition (without repair (control), repair with hot cure, cold cure, hot and cold cure reinforced with either (5% Zr2O or 0.5% Al2O3). The samples in these
... Show MoreIn this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.
Permanent deformation, fatigue and thermal cracking are the three typical distresses of flexible pavement. Using hydrated lime (HL) into the conventional limestone mineral additive has been widely practiced, including in Europe, to improve the mechanical properties of hot mix asphalt (HMA) concrete and as the result the durability of the constructed pavement. Large number of experimental studies have been reported to find the optimum addition of HL for the improvement on HMA concrete mechanical properties, moisture susceptibility and fatigue resistance. Pavement in service is under complex thermomechanical stress-strain conditions due to coupled atmospheric and surrounding environment temperature variation and the traffic loading. To predic
... Show MoreThis study aims to evaluate and compare the cytotoxicity and biocompatibility of a modified heat-cured acrylic denture base material containing 15% phosphoric acid 2-hydroxyethyl methacrylate ester (PA2HEME) with those of nonmodified PMMA. Discs with a diameter of 12 mm and a thickness of 2 mm were prepared using a heat-cured PMMA denture base material and divided into control and experimental groups. The experimental group was modified with 15% phosphoric acid 2-hydroxyethyl methacrylate ester (PA2HEME). The modified and nonmodified materials were tested via FTIR, and the effect of modification on surface roughness was evaluated with AFM. An in vitro test was conducted to examine the cytotoxicity and biocompatibility of heat-cured acry
... Show MoreThis research studies the influence of water source on the compressive strength of high strength concrete. Four types of water source were adopted in both mixing and curing process these are river, tap, well and drainage water (all from Iraq-Diyala governorate). Chemical analysis was carried out for all types of the used water including (pH, total dissolved solids (TDS), Turbidity, chloride, total suspended solid (TSS), and sulfates). Depending on the chemical analysis results, it was found that for all adopted sources the chemical compositions was within the ASTM C 1602/C 1602M-04 limits and can be satisfactorily used in concrete mixtures. Mixture of high strength concrete for compressive strength of (60 MPa) was designed and checked using
... Show MoreA finite element is a study that is capable of predicting crack initiation and simulating crack propagation of human bone. The material model is implemented in MATLAB finite element package, which allows extension to any geometry and any load configuration. The fracture mechanics parameters for transverse and longitudinal crack propagation in human bone are analyzed. A fracture toughness as well as stress and strain contour are generated and thoroughly evaluated. Discussion is given on how this knowledge needs to be extended to allow prediction of whole bone fracture from external loading to aid the design of protective systems.
Some structures such as tall buildings, offshore platforms, and bridge bents are subjected to lateral loads of considerable magnitude due to wind and wave actions, ship impacts, or high-speed vehicles. Significant torsional forces can be transferred to the foundation piles by virtue of eccentric lateral loading. The testing program of this study includes one group consists of 3 piles, four percentages of allowable vertical load were used (0%, 25%, 50%, and 100%) with two L/D ratios 20 and 30, vertical allowable load 110 N for L/D = 20 and 156 N for L/D = 30. The results obtained indicate that the torsional capacity for pile group increases with increasing the percentage of allowable vertical load, when the percentage of allowable vertica
... Show MoreThe optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of
... Show More