The problem of soil contamination is increased recently due to increasing the industrial wastes such as petroleum hydrocarbon, organic solvents, and heavy metals as well as maximizing the use of agricultural fertilizers. During this period, wide development of data collection methods, using remote sensing techniques in the field of soil and environment applications appear and state the suitable technique for remediation. This study deals with the application of remote sensing techniques in geoenvironmental engineering through a field spectral reflectance measurements at nine spots of naturally hydrocarbons contaminated soil in Al-Daura Refinery Company site which is located to the south west of Baghdad using radiometer device to get standard curves of wavelengths and analyzing the satellite imagery of the site to get the spectral reflectance curves using GIS technique and EARDAS software package which help in producing thematic maps for the spatial distribution and concentration of contaminants. The comparison of results showed a good correlation between the spectral reflectance from field measurements and the spectral reflectance obtained from analyzing the satellite imagery. The study also improves a method to save cost, time, efforts and staff.
In this research PbS thin film have been prepared by chemical bath deposition technique (CBD).The PbS film with thickness of (1-1.5)μm was thermally treated at temperature of 100°C for 4 hours. Some Structural characteristics was studied by using X-ray diffraction (XRD)and optical microscope photograph some of chemical gas sensing measurements were carried out ,it shown that the sensitivity of (CO2) gas depend on the grain Size and deposition substrate. The grain size of PbS film deposited on on glass closed to 21.4 nm while 37.97nm for Si substrate. The result of current-voltage characterization shwon the sensitivity of prepared film deposited on Si better than film on glass.
In the current study, remote sensing techniques and geographic information systems were used to detect changes in land use / land cover (LULC) in the city of Al Hillah, central Iraq for the period from 1990 - 2022. Landsat 5 TM and Landsat 8 OLI visualizations, correction and georeferencing of satellite visuals were used. And then make the necessary classifications to show the changes in LULC in the city of Al Hillah. Through the study, the results showed that there is a clear expansion in the urban area from 20.5 km2 in 1990 to about 57 km2 in 2022. On the other hand, the results showed that there is a slight increase in agricultural areas and water. While the arid (empty) area decreased from 168.7 km 2 to 122 km 2 in 2022. Long-term ur
... Show MoreTigris River is one of the main important surface water resources in Iraq. This necessitates continuous study of its quality . The present study is concerned with the characteristics and quality of Tigris water passing through in Baghdad city. (eight) samples were collected from the river in the area Grea't City. The study periods were carried over four season, which has been sampled once represent the every season. First sampling 12-11-2012 represent the autumn season The second sampling 20-1-2013 to represent the winter season. The third in 25-3- 2013 to represent the Springer season. The fourth during 29-5-2013 to represent the summer spring season. In order to specify the water quality, a group of physical and chemical analyses have bee
... Show MoreBuilding natural period, T, is a key character in building response for wind and seismic induced forces. In design practice, the period, T, is either estimated from empirical relations proposed by the design codes or determined from analytical or numerical models. The effect of the soil-structure interaction is usually neglected in the design practice and analysis models. This paper uses a sophisticated finite element simulation to investigate the effect of soil-structure modeling on the fundamental period of RC buildings subjected to wind and seismic induced forces. A typical interior building frame has been imitated using the frame element for beams and columns with constrains to mo
This research aims to investigate and evaluate a reactive powder concrete (RPC) cast using economical materials. Its mechanical properties were investigated and evaluated by studying the effects of using different cement and silica fume contents and locally steel fibers aspect ratios as reinforcement for this concrete. A compressive strength of about 155.2MPa, indirect tensile strength of 16.0MPa, modulus of elasticity of 48.7GPa, flexural strength of 43.5MPa, impact energy of 3294.4kN.m and abrasion loss 0.59% have been achieved for reinforced RPC contains 910 kg/m3 cement content, silica fume content 185 kg/m3 of cement weight and fiber volume fraction 2%. The water absorption values w
... Show MoreThe work concerned with studying the effect of (SiO2) addition as a
filler on the adhesive properties of (PVA). Samples were prepared as
sheets by using casting method. The mechanical properties showed
that increase in tensile strength from (34MPa) to (68MPa) when
(SiO2) added to (PVA). The adhesive strength showed that joint
properties depend upon specific adhesive characteristic of material
(PVA) and (SiO2\PVA)composites at different concentrations (1.5%,
2.5%, 3.5%, 4.5wt%), the cohesive strength of the adhesive material,
the joint design, and adherent type (Sponge Rubber(SR), Natural
leather (NL), Vulcanized Rubber(VR), and Cartoon). The results
proved the tensile strength increased with (SiO2) ratio, so