The problem of soil contamination is increased recently due to increasing the industrial wastes such as petroleum hydrocarbon, organic solvents, and heavy metals as well as maximizing the use of agricultural fertilizers. During this period, wide development of data collection methods, using remote sensing techniques in the field of soil and environment applications appear and state the suitable technique for remediation. This study deals with the application of remote sensing techniques in geoenvironmental engineering through a field spectral reflectance measurements at nine spots of naturally hydrocarbons contaminated soil in Al-Daura Refinery Company site which is located to the south west of Baghdad using radiometer device to get standard curves of wavelengths and analyzing the satellite imagery of the site to get the spectral reflectance curves using GIS technique and EARDAS software package which help in producing thematic maps for the spatial distribution and concentration of contaminants. The comparison of results showed a good correlation between the spectral reflectance from field measurements and the spectral reflectance obtained from analyzing the satellite imagery. The study also improves a method to save cost, time, efforts and staff.
The toxicity effect of some heavy metals (Lead, Cadmium, Copper, and Zinc) on the growth of alga Scenedesmus dimorphus which belongs to the Division of Chlorophyta was studied and depended on the total cell number . The growth rate and doubling time were also calculated accordingly in present of absent of the the heavy metals . There were differences in toxic effects of the metals (p<0.05) . The growth was decreased gradually with alga when exposured to Lead at 15,20 and 25 mg/l in comparison with the control , mean while 30 mg/l caused an acute decrease in growth . Treating the alga with 0.05,0.1,0.5 mg/l concentration of Cadmium the number of cells decreased while at 1 mg/l the effect was more pronounced . As for Copper the conc
... Show MoreWe prepared polythiophene (PTH) with single wall carbon nanotube (SWCNT) nanocomposite thin films for Nitrogen dioxide (NO2) gas sensing applications. Thin films were synthesized via electrochemical polymerization method onto (Indium tin oxide) ITO coated glass substrate of thiophene monomer with magnesium perchlorate and different concentration from SWCNT (0.012 and 0.016) % in the presence130mL of Acetonitrile used. X-ray diffraction (XRD), Field Emission Scanning Electron microscopy (FE-SEM), Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to characterized these nanocomposite thin films. The response of these nanocomposite for NO2 gas was evaluated via monitoring the change
... Show MoreCognitive radio is observed as a new approach, which could be cope with the spectral limitations. This approach is designed to detect whether a particular segment of the radio spectrum is currently in use and to jump into the temporarily unused spectrum rapidly without interfering with the transmissions of other users. CR is the promising radio technology which aims to detect and utilize the temporally unused spectrum bands by sensing its radio environment in order to improve spectrum utilization. To enhance the sensing performance, cooperative spectrum sensing has been proposed. However, when the number of cognitive user tends to be very large, the bandwidth for reporting sensing results to the common receiver will be very huge. In this pa
... Show MoreCollapsible behaviour of soil is considered as one of the major problems in the stability of roadway embankment, the lack of cohesion between soil particles and its sensitivity to the change of moisture content are reasons for such problem. Creation of such cohesion may be achieved by implementation of liquid asphalt and introduction of Nano additives. In this work, silica fumes, fly ash and lime have been implemented with the aid of asphalt emulsion to improve the unconfined compressive strength of the collapsible soil. Specimens of 38 mm in diameter and 76 mm height have been prepared with various percentages of each type of Nano additive and fluid content. Specimens were subjected to unconfined compressive strength determination at dry a
... Show MoreIn this work, an optical fiber biomedical sensor for detecting the ratio of the hemoglobin in the blood is presented. A surface plasmon resonance (SPR)-based coreless optical fiber was developed and implemented using single- and multi-mode optical fibers. The sensor is also utilized to evaluate refractive indices and concentrations of hemoglobin in blood samples, with 40 nm thickness of (20 nm Au and 20 nm Ag) to increase the sensitivity. It is found in practice that when the sensitive refractive index increases, the resonant wavelength increases due to the decrease in energy.
The dynamic response of foundation rest on collapsible soil in dry and soaked states is studied through wide experimental programmed. Gypseous soil from Tikrit governorate area was obtained and subjected to various physical and chemical analysis to determine its properties. Steel rectangular footing (400x200x20) mm is manufactured. The machine is fitted to the footing, then the model machine foundation is placed centrally over the prepared soil layer in steel container (1200x 1000x1000)mm with proper care to maintain the center of gravity of whole system lie in the same vertical line with container.Then, the footing is subjected to vertical harmonic loading using a rotating mass type mechanical oscillator to simulate different dynamic lo
... Show MoreElectrochemical Machining is a term given to one of nontraditional machining that uses a chemical reaction associated with electric current to remove the material. The process is depending on the principle of anodic dissolution theory for evaluating material removal during electrochemical process. In this study, the electrochemical machining was used to remove 1 mm from the length of the a workpiece (stainless steel 316 H) by immersing it in to electrolyte (10, 20 and 30 g) of NaCl and Na2SO4 to every (1 litter of filtered water). The tool used was made from copper. Gap size between the workpiece and electrode is (0.5) mm. This study focuses on the effect of the changing the type and concentration of electroly
... Show MoreThe significance of the research conducted in northern Iraq comes despite the expansion of afforestation projects; yet, the suffering of the forests has increased due to their lack of scientific study, unpredictability of the climate, and adverse effects on the spread and growth of plant species Therefore, the goal of the study is to understand the effects of afforestation through a statistical analysis of plant diversity in northern Iraq and its distinctivenessThe analysis revealed that natural groupings had improved qualitatively more than other groups, particularly some dwindling species that are able to compete and occupy new areas. drought-prone vegetation, vegetation, and climat
Background: The aim of the study was to evaluate the amount of changes in the horizontal and vertical maxillary arch dimensions measurements following the premature loss of primary molars. Materials and methods: The sample consist of (50) children with unilateral prematurely extracted either first or second primary molars at the mixed dentition stage. Results and Conclusions: Results shows that there was an increase in the vertical incisor to canine distance (A) with both premature loss of first & second primary molars due to distal movement of primary canines and at the same time there were a significant loss of space in the extraction space with premature loss of second primary molar due to a mesial movement of maxillary first permanent
... Show More